Deep Convolutional Neural Networks for Displacement Estimation in ARFI Imaging

Ultrasound elasticity imaging in soft tissue with acoustic radiation force requires the estimation of displacements, typically on the order of several microns, from serially acquired raw data A-lines. In this work, we implement a fully convolutional neural network (CNN) for ultrasound displacement e...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 68(2021), 7 vom: 24. Juli, Seite 2472-2481
1. Verfasser: Chan, Derek Y (VerfasserIn)
Weitere Verfasser: Morris, D Cody, Polascik, Thomas J, Palmeri, Mark L, Nightingale, Kathryn R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM323167551
003 DE-627
005 20231225183608.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2021.3068377  |2 doi 
028 5 2 |a pubmed24n1077.xml 
035 |a (DE-627)NLM323167551 
035 |a (NLM)33760733 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chan, Derek Y  |e verfasserin  |4 aut 
245 1 0 |a Deep Convolutional Neural Networks for Displacement Estimation in ARFI Imaging 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.10.2021 
500 |a Date Revised 20.09.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Ultrasound elasticity imaging in soft tissue with acoustic radiation force requires the estimation of displacements, typically on the order of several microns, from serially acquired raw data A-lines. In this work, we implement a fully convolutional neural network (CNN) for ultrasound displacement estimation. We present a novel method for generating ultrasound training data, in which synthetic 3-D displacement volumes with a combination of randomly seeded ellipsoids are created and used to displace scatterers, from which simulated ultrasonic imaging is performed using Field II. Network performance was tested on these virtual displacement volumes, as well as an experimental ARFI phantom data set and a human in vivo prostate ARFI data set. In the simulated data, the proposed neural network performed comparably to Loupas's algorithm, a conventional phase-based displacement estimation algorithm; the rms error was [Formula: see text] for the CNN and 0.73 [Formula: see text] for Loupas. Similarly, in the phantom data, the contrast-to-noise ratio (CNR) of a stiff inclusion was 2.27 for the CNN-estimated image and 2.21 for the Loupas-estimated image. Applying the trained network to in vivo data enabled the visualization of prostate cancer and prostate anatomy. The proposed training method provided 26 000 training cases, which allowed robust network training. The CNN had a computation time that was comparable to Loupas's algorithm; further refinements to the network architecture may provide an improvement in the computation time. We conclude that deep neural network-based displacement estimation from ultrasonic data is feasible, providing comparable performance with respect to both accuracy and speed compared to current standard time-delay estimation approaches 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Morris, D Cody  |e verfasserin  |4 aut 
700 1 |a Polascik, Thomas J  |e verfasserin  |4 aut 
700 1 |a Palmeri, Mark L  |e verfasserin  |4 aut 
700 1 |a Nightingale, Kathryn R  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 68(2021), 7 vom: 24. Juli, Seite 2472-2481  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnns 
773 1 8 |g volume:68  |g year:2021  |g number:7  |g day:24  |g month:07  |g pages:2472-2481 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2021.3068377  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 68  |j 2021  |e 7  |b 24  |c 07  |h 2472-2481