GAN-Based Multi-Style Photo Cartoonization

Cartoon is a common form of art in our daily life and automatic generation of cartoon images from photos is highly desirable. However, state-of-the-art single-style methods can only generate one style of cartoon images from photos and existing multi-style image style transfer methods still struggle...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 28(2022), 10 vom: 06. Okt., Seite 3376-3390
1. Verfasser: Shu, Yezhi (VerfasserIn)
Weitere Verfasser: Yi, Ran, Xia, Mengfei, Ye, Zipeng, Zhao, Wang, Chen, Yang, Lai, Yu-Kun, Liu, Yong-Jin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM32307040X
003 DE-627
005 20231225183358.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2021.3067201  |2 doi 
028 5 2 |a pubmed24n1076.xml 
035 |a (DE-627)NLM32307040X 
035 |a (NLM)33750692 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shu, Yezhi  |e verfasserin  |4 aut 
245 1 0 |a GAN-Based Multi-Style Photo Cartoonization 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.09.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Cartoon is a common form of art in our daily life and automatic generation of cartoon images from photos is highly desirable. However, state-of-the-art single-style methods can only generate one style of cartoon images from photos and existing multi-style image style transfer methods still struggle to produce high-quality cartoon images due to their highly simplified and abstract nature. In this article, we propose a novel multi-style generative adversarial network (GAN) architecture, called MS-CartoonGAN, which can transform photos into multiple cartoon styles. MS-CartoonGAN uses only unpaired photos and cartoon images of multiple styles for training. To achieve this, we propose to use (1) a hierarchical semantic loss with sparse regularization to retain semantic content and recover flat shading in different abstract levels, (2) a new edge-promoting adversarial loss for producing fine edges, and (3) a style loss to enhance the difference between output cartoon styles and make training process more stable. We also develop a multi-domain architecture, where the generator consists of a shared encoder and multiple decoders for different cartoon styles, along with multiple discriminators for individual styles. By observing that cartoon images drawn by different artists have their unique styles while sharing some common characteristics, our shared network architecture exploits the common characteristics of cartoon styles, achieving better cartoonization and being more efficient than single-style cartoonization. We show that our multi-domain architecture can theoretically guarantee to output desired multiple cartoon styles. Through extensive experiments including a user study, we demonstrate the superiority of the proposed method, outperforming state-of-the-art single-style and multi-style image style transfer methods 
650 4 |a Journal Article 
700 1 |a Yi, Ran  |e verfasserin  |4 aut 
700 1 |a Xia, Mengfei  |e verfasserin  |4 aut 
700 1 |a Ye, Zipeng  |e verfasserin  |4 aut 
700 1 |a Zhao, Wang  |e verfasserin  |4 aut 
700 1 |a Chen, Yang  |e verfasserin  |4 aut 
700 1 |a Lai, Yu-Kun  |e verfasserin  |4 aut 
700 1 |a Liu, Yong-Jin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 28(2022), 10 vom: 06. Okt., Seite 3376-3390  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:28  |g year:2022  |g number:10  |g day:06  |g month:10  |g pages:3376-3390 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2021.3067201  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 10  |b 06  |c 10  |h 3376-3390