Video-Based Facial Micro-Expression Analysis : A Survey of Datasets, Features and Algorithms

Unlike the conventional facial expressions, micro-expressions are involuntary and transient facial expressions capable of revealing the genuine emotions that people attempt to hide. Therefore, they can provide important information in a broad range of applications such as lie detection, criminal det...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 9 vom: 02. Sept., Seite 5826-5846
1. Verfasser: Ben, Xianye (VerfasserIn)
Weitere Verfasser: Ren, Yi, Zhang, Junping, Wang, Su-Jing, Kpalma, Kidiyo, Meng, Weixiao, Liu, Yong-Jin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM322963818
003 DE-627
005 20231225183142.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3067464  |2 doi 
028 5 2 |a pubmed24n1076.xml 
035 |a (DE-627)NLM322963818 
035 |a (NLM)33739920 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ben, Xianye  |e verfasserin  |4 aut 
245 1 0 |a Video-Based Facial Micro-Expression Analysis  |b A Survey of Datasets, Features and Algorithms 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.08.2022 
500 |a Date Revised 14.09.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Unlike the conventional facial expressions, micro-expressions are involuntary and transient facial expressions capable of revealing the genuine emotions that people attempt to hide. Therefore, they can provide important information in a broad range of applications such as lie detection, criminal detection, etc. Since micro-expressions are transient and of low intensity, however, their detection and recognition is difficult and relies heavily on expert experiences. Due to its intrinsic particularity and complexity, video-based micro-expression analysis is attractive but challenging, and has recently become an active area of research. Although there have been numerous developments in this area, thus far there has been no comprehensive survey that provides researchers with a systematic overview of these developments with a unified evaluation. Accordingly, in this survey paper, we first highlight the key differences between macro- and micro-expressions, then use these differences to guide our research survey of video-based micro-expression analysis in a cascaded structure, encompassing the neuropsychological basis, datasets, features, spotting algorithms, recognition algorithms, applications and evaluation of state-of-the-art approaches. For each aspect, the basic techniques, advanced developments and major challenges are addressed and discussed. Furthermore, after considering the limitations of existing micro-expression datasets, we present and release a new dataset - called micro-and-macro expression warehouse (MMEW) - containing more video samples and more labeled emotion types. We then perform a unified comparison of representative methods on CAS(ME) 2 for spotting, and on MMEW and SAMM for recognition, respectively. Finally, some potential future research directions are explored and outlined 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Ren, Yi  |e verfasserin  |4 aut 
700 1 |a Zhang, Junping  |e verfasserin  |4 aut 
700 1 |a Wang, Su-Jing  |e verfasserin  |4 aut 
700 1 |a Kpalma, Kidiyo  |e verfasserin  |4 aut 
700 1 |a Meng, Weixiao  |e verfasserin  |4 aut 
700 1 |a Liu, Yong-Jin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 9 vom: 02. Sept., Seite 5826-5846  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:9  |g day:02  |g month:09  |g pages:5826-5846 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3067464  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 9  |b 02  |c 09  |h 5826-5846