Tunable Electrocatalytic Behavior of Sodiated MoS2 Active Sites toward Efficient Sulfur Redox Reactions in Room-Temperature Na-S Batteries

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 16 vom: 01. Apr., Seite e2100229
1. Verfasser: Wang, Yanxia (VerfasserIn)
Weitere Verfasser: Lai, Yangyang, Chu, Jun, Yan, Zichao, Wang, Yun-Xiao, Chou, Shu-Lei, Liu, Hua-Kun, Dou, Shi Xue, Ai, Xinping, Yang, Hanxi, Cao, Yuliang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article electrocatalytic mechanism room-temperature sodium-sulfur batteries sodiated MoS2 sulfur redox reactions
Beschreibung
Zusammenfassung:© 2021 Wiley-VCH GmbH.
Room-temperature (RT) sodium-sulfur (Na-S) batteries hold great promise for large-scale energy storage due to the advantages of high energy density, low cost, and resource abundance. The research progress on RT Na-S batteries, however, has been greatly hindered by the sluggish kinetics of the sulfur redox reactions. Herein, an elaborate multifunctional architecture, consisting of N-doped carbon skeletons and tunable MoS2 sulfiphilic sites, is fabricated via a simple one-pot reaction followed by in situ sulfurization. Beyond the physical confinement and chemical binding of polarized N-doped carbonaceous microflowers, the MoS2 active sites play a key role in catalyzing polysulfide redox reactions, especially the conversion from long-chain Na2 Sn (4 ≤ n ≤ 8) to short-chain Na2 S2 and Na2 S. Significantly, the electrocatalytic activity of MoS2 can be tunable via adjusting the discharge depth. It is remarkable that the sodiated MoS2 exhibits much stronger binding energy and electrocatalytic behavior compared to MoS2 sites, effectively enhancing the formation of the final Na2 S product. Consequently, the S cathode achieves superior electrochemical performance in RT Na-S batteries, delivering a high capacity of 774.2 mAh g-1 after 800 cycles at 0.2 A g-1 , and an ultrahigh capacity retention with a capacity decay rate of only 0.0055% per cycle over 2800 cycles
Beschreibung:Date Revised 20.04.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202100229