|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM322865530 |
003 |
DE-627 |
005 |
20231225182940.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2021.3064229
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1076.xml
|
035 |
|
|
|a (DE-627)NLM322865530
|
035 |
|
|
|a (NLM)33729937
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Guoqing
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Attentive Feature Refinement Network for Single Rainy Image Restoration
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 24.03.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Despite the fact that great progress has been made on single image deraining tasks, it is still challenging for existing models to produce satisfactory results directly, and it often requires a single or multiple refinement stages to gradually improve the quality. However, in this paper, we demonstrate that existing image-level refinement with a stage-independent learning design is problematic with the side effect of over/under-deraining. To resolve this issue, we for the first time propose the mechanism of learning to carry out refinement on the unsatisfactory features, and propose a novel attentive feature refinement (AFR) module. Specifically, AFR is designed as a two-branched network for simultaneous rain-distribution-aware attention map learning and attention guided hierarchy-preserving feature refinement. Guided by task-specific attention, coarse features are progressively refined to better model the diversified rainy effects. By using a separable convolution as the basic component, our AFR module introduces little computation overhead and can be readily integrated into most rainy-to-clean image translation networks for achieving better deraining results. By incorporating a series of AFR modules into a general encoder-decoder network, AFR-Net is constructed for deraining and it achieves new state-of-the-art results on both synthetic and real images. Furthermore, by using AFR-Net as a teacher model, we explore the use of knowledge distillation to successfully learn a student model that is also able to achieve state-of-the-art results but with a much faster inference speed (i.e., it only takes 0.08 second to process a 512×512 rainy image). Code and pre-trained models are available at 〈 https://github.com/RobinCSIRO/AFR-Net 〉
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Sun, Changming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sowmya, Arcot
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 30(2021) vom: 17., Seite 3734-3747
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2021
|g day:17
|g pages:3734-3747
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2021.3064229
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2021
|b 17
|h 3734-3747
|