Deep Dichromatic Guided Learning for Illuminant Estimation

A new dichromatic illuminant estimation method using a deep neural network is proposed. Previous methods based on the dichromatic reflection model commonly suffer from inaccurate separation of specularity, thus being limited in their use in a real-world. Recent deep neural network-based methods have...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 17., Seite 3623-3636
1. Verfasser: Woo, Sung-Min (VerfasserIn)
Weitere Verfasser: Kim, Jong-Ok
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM322865360
003 DE-627
005 20231225182940.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3062729  |2 doi 
028 5 2 |a pubmed24n1076.xml 
035 |a (DE-627)NLM322865360 
035 |a (NLM)33729924 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Woo, Sung-Min  |e verfasserin  |4 aut 
245 1 0 |a Deep Dichromatic Guided Learning for Illuminant Estimation 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 17.03.2021 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A new dichromatic illuminant estimation method using a deep neural network is proposed. Previous methods based on the dichromatic reflection model commonly suffer from inaccurate separation of specularity, thus being limited in their use in a real-world. Recent deep neural network-based methods have shown a significant improvement in the estimation of the illuminant color. However, why they succeed or fail is not explainable easily, because most of them estimate the illuminant color at the network output directly. To tackle these problems, the proposed architecture is designed to learn dichromatic planes and their confidences using a deep neural network with novel losses function. The illuminant color is estimated by a weighted least mean square of these planes. The proposed dichromatic guided learning not only achieves compelling results among state-of-the-art color constancy methods in standard real-world benchmark evaluations, but also provides a map to include color and regional contributions for illuminant estimation, which allow for an in-depth analysis of success and failure cases of illuminant estimation 
650 4 |a Journal Article 
700 1 |a Kim, Jong-Ok  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 17., Seite 3623-3636  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:17  |g pages:3623-3636 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3062729  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 17  |h 3623-3636