Solar photocatalytic degradation of metformin by TiO2 synthesized using Calotropis gigantea leaf extract

A novel TiO2 nanoparticle was prepared through green synthesis using Calotropis gigantea (CG) leaf extract. Morphological analysis showed dispersed spherical CG-TiO2 nanoparticles with an average size of 42 nm. The prepared catalyst was used for the degradation of metformin (a widely used diabetic m...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 83(2021), 5 vom: 15. März, Seite 1072-1084
1. Verfasser: Prashanth, Venkatesan (VerfasserIn)
Weitere Verfasser: Priyanka, Kumari, Remya, Neelancherry
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Plant Extracts titanium dioxide 15FIX9V2JP Metformin 9100L32L2N Titanium D1JT611TNE
Beschreibung
Zusammenfassung:A novel TiO2 nanoparticle was prepared through green synthesis using Calotropis gigantea (CG) leaf extract. Morphological analysis showed dispersed spherical CG-TiO2 nanoparticles with an average size of 42 nm. The prepared catalyst was used for the degradation of metformin (a widely used diabetic medicine) by solar photocatalysis. A three-factor central composite design (CCD) was used to explore the effect of independent variables, i.e., pH 3-7, metformin concentration 1-10 mg/L, and catalyst (CG-TiO2) dosage 0.5-2.0 g/L. A maximum metformin degradation of 96.7% was observed under optimum conditions i.e., pH = 9.7, initial metformin concentration = 9.7 mg/L and catalyst dosage = 0.7 g/L, with ∼86% mineralization efficiency. A quadratic model with an error <±5% was developed to predict the metformin degradation and the rate of degradation under the optimum conditions followed pseudo-first-order kinetics (k = 0.014/min). CG-TiO2 exhibited higher metformin degradation efficiency (96.7%) compared to P-25 (23.9%) at optimum conditions. The recyclability study indicated effective reuse of the catalyst for up to three cycles. The proposed metformin degradation route is hydroxyl radical (•OH) generation on the CG-TiO2 surface, transfer of •OH to the aqueous phase from CG-TiO2 and subsequent oxidation of metformin in the aqueous phase
Beschreibung:Date Completed 18.03.2021
Date Revised 18.03.2021
published: Print
Citation Status MEDLINE
ISSN:0273-1223
DOI:10.2166/wst.2021.040