Impact of Geometrical Disorder on Phase Equilibria of Fluids and Solids Confined in Mesoporous Materials

Porous solids used in practical applications often possess structural disorder over broad length scales. This disorder strongly affects different properties of the substances confined in their pore spaces. Quantifying structural disorder and correlating it with the physical properties of confined ma...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 12 vom: 30. März, Seite 3521-3537
1. Verfasser: Enninful, Henry R N B (VerfasserIn)
Weitere Verfasser: Schneider, Daniel, Enke, Dirk, Valiullin, Rustem
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Porous solids used in practical applications often possess structural disorder over broad length scales. This disorder strongly affects different properties of the substances confined in their pore spaces. Quantifying structural disorder and correlating it with the physical properties of confined matter is thus a necessary step toward the rational use of porous solids in practical applications and process optimization. The present work focuses on recent advances made in the understanding of correlations between the phase state and geometric disorder in nanoporous solids. We overview the recently developed statistical theory for phase transitions in a minimalistic model of disordered pore networks: linear chains of pores with statistical disorder. By correlating its predictions with various experimental observations, we show that this model gives notable insight into collective phenomena in phase-transition processes in disordered materials and is capable of explaining self-consistently the majority of the experimental results obtained for gas-liquid and solid-liquid equilibria in mesoporous solids. The potentials of the theory for improving the gas sorption and thermoporometry characterization of porous materials are discussed
Beschreibung:Date Revised 30.03.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.0c03047