Identifying mortality factors from Machine Learning using Shapley values - a case of COVID19

© 2021 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications. - 1999. - 176(2021) vom: 15. Aug., Seite 114832
1. Verfasser: Smith, Matthew (VerfasserIn)
Weitere Verfasser: Alvarez, Francisco
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Expert systems with applications
Schlagworte:Journal Article COVID19 Coronavirus Machine Learning Shapley values
LEADER 01000caa a22002652 4500
001 NLM322801729
003 DE-627
005 20240909231913.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.eswa.2021.114832  |2 doi 
028 5 2 |a pubmed24n1528.xml 
035 |a (DE-627)NLM322801729 
035 |a (NLM)33723478 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Smith, Matthew  |e verfasserin  |4 aut 
245 1 0 |a Identifying mortality factors from Machine Learning using Shapley values - a case of COVID19 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Elsevier Ltd. All rights reserved. 
520 |a In this paper we apply a series of Machine Learning models to a recently published unique dataset on the mortality of COVID19 patients. We use a dataset consisting of blood samples of 375 patients admitted to a hospital in the region of Wuhan, China. There are 201 patients who survived hospitalisation and 174 patients who died whilst in hospital. The focus of the paper is not only on seeing which Machine Learning model is able to obtain the absolute highest accuracy but more on the interpretation of what the Machine Learning models provides. We find that age, days in hospital, Lymphocyte and Neutrophils are important and robust predictors when predicting a patients mortality. Furthermore, the algorithms we use allows us to observe the marginal impact of each variable on a case-by-case patient level, which might help practicioneers to easily detect anomalous patterns. This paper analyses the global and local interpretation of the Machine Learning models on patients with COVID19 
650 4 |a Journal Article 
650 4 |a COVID19 
650 4 |a Coronavirus 
650 4 |a Machine Learning 
650 4 |a Shapley values 
700 1 |a Alvarez, Francisco  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Expert systems with applications  |d 1999  |g 176(2021) vom: 15. Aug., Seite 114832  |w (DE-627)NLM098196782  |x 0957-4174  |7 nnns 
773 1 8 |g volume:176  |g year:2021  |g day:15  |g month:08  |g pages:114832 
856 4 0 |u http://dx.doi.org/10.1016/j.eswa.2021.114832  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 176  |j 2021  |b 15  |c 08  |h 114832