Plasmonic Photocatalytic Enhancement of L-Cysteine Self-Assembled Gold Nanoparticle Clusters for Fenton Reaction Catalysis

Plasmon-enhanced photocatalysis has the potential to reduce activation energies and decrease temperature requirements, which increases catalyst stability and lowers process operating costs. The near-field enhancement that occurs at junctions between plasmonic nanoparticle clusters (i.e., hot spots)...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 11 vom: 23. März, Seite 3281-3287
1. Verfasser: Agrawal, Siddharth (VerfasserIn)
Weitere Verfasser: Mysko, Ryan A, Nigra, Michael M, Mohanty, Swomitra K, Hoepfner, Michael P
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Plasmon-enhanced photocatalysis has the potential to reduce activation energies and decrease temperature requirements, which increases catalyst stability and lowers process operating costs. The near-field enhancement that occurs at junctions between plasmonic nanoparticle clusters (i.e., hot spots) has been well-studied for sensing applications (e.g., Raman scattering). However, experimental insight into the effect of nanoparticle cluster hot spots on plasmon-enhanced photocatalysis is lacking. We demonstrate that catalytic activity is increased when clusters of gold nanoparticles (AuNPs) are formed relative to isolated particles using the same catalyst loading. Through experimental controls, we conclude that this catalytic enhancement is most likely due to the formation of plasmonic hot spots. Clusters of AuNPs were formed by adding L-cysteine to an AuNP dispersion, and a 20 ± 12% enhancement in the photocatalytic dye degradation rate was observed using a Fenton process. While this report may be a modest enhancement relative to the spectacular near-field electromagnetic field enhancements predicted by simulation at the nanoparticle junction, this finding supports the recent work of Srimanta et al. that plasmonic hot spots contribute to catalytic rate enchantments. It is anticipated that further self-assembly strategies to optimize interparticle orientations and cluster size distributions will improve the enhancement due to the formation of hot spots, and careful control will be required. For example, excess L-cysteine addition revealed extensive aggregation and subsequent rate reductions
Beschreibung:Date Completed 30.03.2021
Date Revised 30.03.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.0c03254