Seasonal and long-term consequences of esca grapevine disease on stem xylem integrity

© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Détails bibliographiques
Publié dans:Journal of experimental botany. - 1985. - 72(2021), 10 vom: 04. Mai, Seite 3914-3928
Auteur principal: Bortolami, Giovanni (Auteur)
Autres auteurs: Farolfi, Elena, Badel, Eric, Burlett, Regis, Cochard, Herve, Ferrer, Nathalie, King, Andrew, Lamarque, Laurent J, Lecomte, Pascal, Marchesseau-Marchal, Marie, Pouzoulet, Jerome, Torres-Ruiz, Jose M, Trueba, Santiago, Delzon, Sylvain, Gambetta, Gregory A, Delmas, Chloe E L
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:Journal of experimental botany
Sujets:Journal Article Research Support, Non-U.S. Gov't Vitis vinifera L Esca X-ray microCT hydraulic failure plant dieback tyloses vascular pathogens xylem anatomy plus... Water 059QF0KO0R
Description
Résumé:© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Hydraulic failure has been extensively studied during drought-induced plant dieback, but its role in plant-pathogen interactions is under debate. During esca, a grapevine (Vitis vinifera) disease, symptomatic leaves are prone to irreversible hydraulic dysfunctions but little is known about the hydraulic integrity of perennial organs over the short- and long-term. We investigated the effects of esca on stem hydraulic integrity in naturally infected plants within a single season and across season(s). We coupled direct (ks) and indirect (kth) hydraulic conductivity measurements, and tylose and vascular pathogen detection with in vivo X-ray microtomography visualizations. Xylem occlusions (tyloses) and subsequent loss of stem hydraulic conductivity (ks) occurred in all shoots with severe symptoms (apoplexy) and in more than 60% of shoots with moderate symptoms (tiger-stripe), with no tyloses in asymptomatic shoots. In vivo stem observations demonstrated that tyloses occurred only when leaf symptoms appeared, and resulted in more than 50% loss of hydraulic conductance in 40% of symptomatic stems, unrelated to symptom age. The impact of esca on xylem integrity was only seasonal, with no long-term impact of disease history. Our study demonstrated how and to what extent a vascular disease such as esca, affecting xylem integrity, could amplify plant mortality through hydraulic failure
Description:Date Completed 21.05.2021
Date Revised 21.05.2021
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erab117