Field-based remote sensing models predict radiation use efficiency in wheat

© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 72(2021), 10 vom: 04. Mai, Seite 3756-3773
1. Verfasser: Robles-Zazueta, Carlos A (VerfasserIn)
Weitere Verfasser: Molero, Gemma, Pinto, Francisco, Foulkes, M John, Reynolds, Matthew P, Murchie, Erik H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't High-throughput phenotyping RUE hyperspectral reflectance partial least squares regression physiological breeding vegetation indices wheat
LEADER 01000caa a22002652c 4500
001 NLM322702313
003 DE-627
005 20250301051116.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1093/jxb/erab115  |2 doi 
028 5 2 |a pubmed25n1075.xml 
035 |a (DE-627)NLM322702313 
035 |a (NLM)33713415 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Robles-Zazueta, Carlos A  |e verfasserin  |4 aut 
245 1 0 |a Field-based remote sensing models predict radiation use efficiency in wheat 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.05.2021 
500 |a Date Revised 16.07.2022 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. 
520 |a Wheat yields are stagnating or declining in many regions, requiring efforts to improve the light conversion efficiency, known as radiation use efficiency (RUE). RUE is a key trait in plant physiology because it links light capture and primary metabolism with biomass accumulation and yield, but its measurement is time consuming and this has limited its use in fundamental research and large-scale physiological breeding. In this study, high-throughput plant phenotyping (HTPP) approaches were used among a population of field-grown wheat with variation in RUE and photosynthetic traits to build predictive models of RUE, biomass, and intercepted photosynthetically active radiation (IPAR). Three approaches were used: best combination of sensors; canopy vegetation indices; and partial least squares regression. The use of remote sensing models predicted RUE with up to 70% accuracy compared with ground truth data. Water indices and canopy greenness indices [normalized difference vegetation index (NDVI), enhanced vegetation index (EVI)] are the better option to predict RUE, biomass, and IPAR, and indices related to gas exchange, non-photochemical quenching [photochemical reflectance index (PRI)] and senescence [structural-insensitive pigment index (SIPI)] are better predictors for these traits at the vegetative and grain-filling stages, respectively. These models will be instrumental to explain canopy processes, improve crop growth and yield modelling, and potentially be used to predict RUE in different crops or ecosystems 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a High-throughput phenotyping 
650 4 |a RUE 
650 4 |a hyperspectral reflectance 
650 4 |a partial least squares regression 
650 4 |a physiological breeding 
650 4 |a vegetation indices 
650 4 |a wheat 
700 1 |a Molero, Gemma  |e verfasserin  |4 aut 
700 1 |a Pinto, Francisco  |e verfasserin  |4 aut 
700 1 |a Foulkes, M John  |e verfasserin  |4 aut 
700 1 |a Reynolds, Matthew P  |e verfasserin  |4 aut 
700 1 |a Murchie, Erik H  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g 72(2021), 10 vom: 04. Mai, Seite 3756-3773  |w (DE-627)NLM098182706  |x 1460-2431  |7 nnas 
773 1 8 |g volume:72  |g year:2021  |g number:10  |g day:04  |g month:05  |g pages:3756-3773 
856 4 0 |u http://dx.doi.org/10.1093/jxb/erab115  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 72  |j 2021  |e 10  |b 04  |c 05  |h 3756-3773