MIGO-NAS : Towards Fast and Generalizable Neural Architecture Search

Neural architecture search (NAS) has achieved unprecedented performance in various computer vision tasks. However, most existing NAS methods are defected in search efficiency and model generalizability. In this paper, we propose a novel NAS framework, termed MIGO-NAS, with the aim to guarantee the e...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 9 vom: 03. Sept., Seite 2936-2952
1. Verfasser: Zheng, Xiawu (VerfasserIn)
Weitere Verfasser: Ji, Rongrong, Chen, Yuhang, Wang, Qiang, Zhang, Baochang, Chen, Jie, Ye, Qixiang, Huang, Feiyue, Tian, Yonghong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM322678064
003 DE-627
005 20231225182539.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3065138  |2 doi 
028 5 2 |a pubmed24n1075.xml 
035 |a (DE-627)NLM322678064 
035 |a (NLM)33710952 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zheng, Xiawu  |e verfasserin  |4 aut 
245 1 0 |a MIGO-NAS  |b Towards Fast and Generalizable Neural Architecture Search 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.09.2021 
500 |a Date Revised 29.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Neural architecture search (NAS) has achieved unprecedented performance in various computer vision tasks. However, most existing NAS methods are defected in search efficiency and model generalizability. In this paper, we propose a novel NAS framework, termed MIGO-NAS, with the aim to guarantee the efficiency and generalizability in arbitrary search spaces. On the one hand, we formulate the search space as a multivariate probabilistic distribution, which is then optimized by a novel multivariate information-geometric optimization (MIGO). By approximating the distribution with a sampling, training, and testing pipeline, MIGO guarantees the memory efficiency, training efficiency, and search flexibility. Besides, MIGO is the first time to decrease the estimation error of natural gradient in multivariate distribution. On the other hand, for a set of specific constraints, the neural architectures are generated by a novel dynamic programming network generation (DPNG), which significantly reduces the training cost under various hardware environments. Experiments validate the advantages of our approach over existing methods by establishing a superior accuracy and efficiency i.e., 2.39 test error on CIFAR-10 benchmark and 21.7 on ImageNet benchmark, with only 1.5 GPU hours and 96 GPU hours for searching, respectively. Besides, the searched architectures can be well generalize to computer vision tasks including object detection and semantic segmentation, i.e., 25× FLOPs compression, with 6.4 mAP gain over Pascal VOC dataset, and 29.9× FLOPs compression, with only 1.41 percent performance drop over Cityscapes dataset. The code is publicly available 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Ji, Rongrong  |e verfasserin  |4 aut 
700 1 |a Chen, Yuhang  |e verfasserin  |4 aut 
700 1 |a Wang, Qiang  |e verfasserin  |4 aut 
700 1 |a Zhang, Baochang  |e verfasserin  |4 aut 
700 1 |a Chen, Jie  |e verfasserin  |4 aut 
700 1 |a Ye, Qixiang  |e verfasserin  |4 aut 
700 1 |a Huang, Feiyue  |e verfasserin  |4 aut 
700 1 |a Tian, Yonghong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 9 vom: 03. Sept., Seite 2936-2952  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:9  |g day:03  |g month:09  |g pages:2936-2952 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3065138  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 9  |b 03  |c 09  |h 2936-2952