Distributed Connected Component Filtering and Analysis in 2D and 3D Tera-Scale Data Sets

Connected filters and multi-scale tools are region-based operators acting on the connected components of an image. Component trees are image representations to efficiently perform these operations as they represent the inclusion relationship of the connected components hierarchically. This paper pre...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 11., Seite 3664-3675
1. Verfasser: Gazagnes, Simon (VerfasserIn)
Weitere Verfasser: Wilkinson, Michael H F
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM322622263
003 DE-627
005 20231225182430.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3064223  |2 doi 
028 5 2 |a pubmed24n1075.xml 
035 |a (DE-627)NLM322622263 
035 |a (NLM)33705314 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gazagnes, Simon  |e verfasserin  |4 aut 
245 1 0 |a Distributed Connected Component Filtering and Analysis in 2D and 3D Tera-Scale Data Sets 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 18.03.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Connected filters and multi-scale tools are region-based operators acting on the connected components of an image. Component trees are image representations to efficiently perform these operations as they represent the inclusion relationship of the connected components hierarchically. This paper presents disccofan (DIStributed Connected COmponent Filtering and ANalysis), a new method that extends the previous 2D implementation of the Distributed Component Forests (DCFs) to handle 3D processing and higher dynamic range data sets. disccofan combines shared and distributed memory techniques to efficiently compute component trees, user-defined attributes filters, and multi-scale analysis. Compared to similar methods, disccofan is faster and scales better on low and moderate dynamic range images, and is the only method with a speed-up larger than 1 on a realistic, astronomical floating-point data set. It achieves a speed-up of 11.20 using 48 processes to compute the DCF of a 162 Gigapixels, single-precision floating-point 3D data set, while reducing the memory used by a factor of 22. This approach is suitable to perform attribute filtering and multi-scale analysis on very large 2D and 3D data sets, up to single-precision floating-point value 
650 4 |a Journal Article 
700 1 |a Wilkinson, Michael H F  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 11., Seite 3664-3675  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:11  |g pages:3664-3675 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3064223  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 11  |h 3664-3675