Learning End-to-End Lossy Image Compression : A Benchmark

Image compression is one of the most fundamental techniques and commonly used applications in the image and video processing field. Earlier methods built a well-designed pipeline, and efforts were made to improve all modules of the pipeline by handcrafted tuning. Later, tremendous contributions were...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 8 vom: 11. Aug., Seite 4194-4211
1. Verfasser: Hu, Yueyu (VerfasserIn)
Weitere Verfasser: Yang, Wenhan, Ma, Zhan, Liu, Jiaying
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM322622212
003 DE-627
005 20231225182430.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3065339  |2 doi 
028 5 2 |a pubmed24n1075.xml 
035 |a (DE-627)NLM322622212 
035 |a (NLM)33705308 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hu, Yueyu  |e verfasserin  |4 aut 
245 1 0 |a Learning End-to-End Lossy Image Compression  |b A Benchmark 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Image compression is one of the most fundamental techniques and commonly used applications in the image and video processing field. Earlier methods built a well-designed pipeline, and efforts were made to improve all modules of the pipeline by handcrafted tuning. Later, tremendous contributions were made, especially when data-driven methods revitalized the domain with their excellent modeling capacities and flexibility in incorporating newly designed modules and constraints. Despite great progress, a systematic benchmark and comprehensive analysis of end-to-end learned image compression methods are lacking. In this paper, we first conduct a comprehensive literature survey of learned image compression methods. The literature is organized based on several aspects to jointly optimize the rate-distortion performance with a neural network, i.e., network architecture, entropy model and rate control. We describe milestones in cutting-edge learned image-compression methods, review a broad range of existing works, and provide insights into their historical development routes. With this survey, the main challenges of image compression methods are revealed, along with opportunities to address the related issues with recent advanced learning methods. This analysis provides an opportunity to take a further step towards higher-efficiency image compression. By introducing a coarse-to-fine hyperprior model for entropy estimation and signal reconstruction, we achieve improved rate-distortion performance, especially on high-resolution images. Extensive benchmark experiments demonstrate the superiority of our model in rate-distortion performance and time complexity on multi-core CPUs and GPUs 
650 4 |a Journal Article 
700 1 |a Yang, Wenhan  |e verfasserin  |4 aut 
700 1 |a Ma, Zhan  |e verfasserin  |4 aut 
700 1 |a Liu, Jiaying  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 8 vom: 11. Aug., Seite 4194-4211  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:8  |g day:11  |g month:08  |g pages:4194-4211 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3065339  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 8  |b 11  |c 08  |h 4194-4211