Thermal Reversibility and Structural Stability in Lysozyme Induced by Epirubicin Hydrochloride

Herein we report the binding interactions between lysozyme (Lyz) and an anthracycline drug, epirubicin hydrochloride (EPR), through an extensive spectroscopic approach at both ensemble average and single molecular resolution. Our steady-state and time-resolved fluorescence spectroscopy reveals that...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 11 vom: 23. März, Seite 3456-3466
1. Verfasser: Khamari, Laxmikanta (VerfasserIn)
Weitere Verfasser: Pramanik, Ushasi, Shekhar, Shashi, Mohanakumar, Shilpa, Mukherjee, Saptarshi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Epirubicin 3Z8479ZZ5X Muramidase EC 3.2.1.17
LEADER 01000naa a22002652 4500
001 NLM322609763
003 DE-627
005 20231225182414.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.1c00179  |2 doi 
028 5 2 |a pubmed24n1075.xml 
035 |a (DE-627)NLM322609763 
035 |a (NLM)33703900 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Khamari, Laxmikanta  |e verfasserin  |4 aut 
245 1 0 |a Thermal Reversibility and Structural Stability in Lysozyme Induced by Epirubicin Hydrochloride 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.06.2021 
500 |a Date Revised 21.06.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Herein we report the binding interactions between lysozyme (Lyz) and an anthracycline drug, epirubicin hydrochloride (EPR), through an extensive spectroscopic approach at both ensemble average and single molecular resolution. Our steady-state and time-resolved fluorescence spectroscopy reveals that the drug-induced fluorescence quenching of the protein proceeds through a static quenching mechanism. Isothermal titration calorimetry (ITC) and steady-state experiments reveal almost similar thermodynamic signatures of the drug-protein interactions. The underlying force that plays pivotal roles in the said interaction is hydrophobic in nature, which is enhanced in the presence of a strong electrolyte (NaCl). Circular dichroism (CD) spectra indicate that there is a marginal increase in the secondary structure of the native protein (α-helical content increases from 26.9 to 31.4% in the presence of 100 μM EPR) upon binding with the drug. Fluorescence correlation spectroscopy (FCS) was used to monitor the changes in structure and conformational dynamics of Lyz upon interaction with EPR. The individual association (Kass = 0.33 × 106 ms-1 M-1) and dissociation (Kdiss = 1.79 ms-1) rate constants and the binding constant (Kb = 1.84 × 105 M-1) values, obtained from fluctuations of fluorescence intensity of the EPR-bound protein, have also been estimated. AutoDock results demonstrate that the drug molecule is encapsulated within the hydrophobic pocket of the protein (in close proximity to both Trp62 and Trp108) and resides ∼20 Å apart from the covalently labelled CPM dye. Förster resonance energy transfer (FRET) studies proved that the distance between the donor (CPM) and the acceptor (EPR) is ∼22 Å, which is very similar to that obtained from molecular docking analysis (∼20 Å). The system also shows temperature-dependent reversible FRET, which may be used as a thermal sensor for the temperature-sensitive biological systems 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Epirubicin  |2 NLM 
650 7 |a 3Z8479ZZ5X  |2 NLM 
650 7 |a Muramidase  |2 NLM 
650 7 |a EC 3.2.1.17  |2 NLM 
700 1 |a Pramanik, Ushasi  |e verfasserin  |4 aut 
700 1 |a Shekhar, Shashi  |e verfasserin  |4 aut 
700 1 |a Mohanakumar, Shilpa  |e verfasserin  |4 aut 
700 1 |a Mukherjee, Saptarshi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 37(2021), 11 vom: 23. März, Seite 3456-3466  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:37  |g year:2021  |g number:11  |g day:23  |g month:03  |g pages:3456-3466 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.1c00179  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 37  |j 2021  |e 11  |b 23  |c 03  |h 3456-3466