Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity

© 2021 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 27(2021), 9 vom: 26. Mai, Seite 1704-1720
1. Verfasser: López, José (VerfasserIn)
Weitere Verfasser: Way, Danielle A, Sadok, Walid
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Review climate change food security meta-analysis plant acclimation stomatal conductance vapor pressure deficit Water 059QF0KO0R
LEADER 01000caa a22002652c 4500
001 NLM322410118
003 DE-627
005 20250301041854.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.15548  |2 doi 
028 5 2 |a pubmed25n1074.xml 
035 |a (DE-627)NLM322410118 
035 |a (NLM)33683792 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a López, José  |e verfasserin  |4 aut 
245 1 0 |a Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.04.2021 
500 |a Date Revised 08.07.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 The Authors. Global Change Biology published by John Wiley & Sons Ltd. 
520 |a Earth is currently undergoing a global increase in atmospheric vapor pressure deficit (VPD), a trend which is expected to continue as climate warms. This phenomenon has been associated with productivity decreases in ecosystems and yield penalties in crops, with these losses attributed to photosynthetic limitations arising from decreased stomatal conductance. Such VPD increases, however, have occurred over decades, which raises the possibility that stomatal acclimation to VPD plays an important role in determining plant productivity under high VPD. Furthermore, evidence points to more far-ranging and complex effects of elevated VPD on plant physiology, extending to the anatomical, biochemical, and developmental levels, which could vary substantially across species. Because these complex effects are typically not considered in modeling frameworks, we conducted a quantitative literature review documenting temperature-independent VPD effects on 112 species and 59 traits and physiological variables, in order to develop an integrated and mechanistic physiological framework. We found that VPD increase reduced yield and primary productivity, an effect that was partially mediated by stomatal acclimation, and also linked with changes in leaf anatomy, nutrient, and hormonal status. The productivity decrease was also associated with negative effects on reproductive development, and changes in architecture and growth rates that could decrease the evaporative surface or minimize embolism risk. Cross-species quantitative relationships were found between levels of VPD increase and trait responses, and we found differences across plant groups, indicating that future VPD impacts will depend on community assembly and crop functional diversity. Our analysis confirms predictions arising from the hydraulic corollary to Darcy's law, outlines a systemic physiological framework of plant responses to rising VPD, and provides recommendations for future research to better understand and mitigate VPD-mediated climate change effects on ecosystems and agro-systems 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a climate change 
650 4 |a food security 
650 4 |a meta-analysis 
650 4 |a plant acclimation 
650 4 |a stomatal conductance 
650 4 |a vapor pressure deficit 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
700 1 |a Way, Danielle A  |e verfasserin  |4 aut 
700 1 |a Sadok, Walid  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 27(2021), 9 vom: 26. Mai, Seite 1704-1720  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnas 
773 1 8 |g volume:27  |g year:2021  |g number:9  |g day:26  |g month:05  |g pages:1704-1720 
856 4 0 |u http://dx.doi.org/10.1111/gcb.15548  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 9  |b 26  |c 05  |h 1704-1720