Drone phenotyping and machine learning enable discovery of loci regulating daily floral opening in lettuce

© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 72(2021), 8 vom: 02. Apr., Seite 2979-2994
1. Verfasser: Han, Rongkui (VerfasserIn)
Weitere Verfasser: Wong, Andy J Y, Tang, Zhehan, Truco, Maria J, Lavelle, Dean O, Kozik, Alexander, Jin, Yufang, Michelmore, Richard W
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Bayesian inference QTL mapping flower opening high-throughput phenotyping image analysis lettuce machine learning remote sensing phenotyping mehr... support vector machine (SVM) unmanned aerial system (UAS)