MLLPA : A Machine Learning-assisted Python module to study phase-specific events in lipid membranes

© 2021 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 42(2021), 13 vom: 15. Mai, Seite 930-943
1. Verfasser: Walter, Vivien (VerfasserIn)
Weitere Verfasser: Ruscher, Céline, Benzerara, Olivier, Thalmann, Fabrice
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't lipid membrane analysis machine learning molecular dynamics phase transition tessellation Membrane Lipids
LEADER 01000naa a22002652 4500
001 NLM322327938
003 DE-627
005 20231225181815.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.26508  |2 doi 
028 5 2 |a pubmed24n1074.xml 
035 |a (DE-627)NLM322327938 
035 |a (NLM)33675541 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Walter, Vivien  |e verfasserin  |4 aut 
245 1 0 |a MLLPA  |b A Machine Learning-assisted Python module to study phase-specific events in lipid membranes 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.09.2021 
500 |a Date Revised 27.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 Wiley Periodicals LLC. 
520 |a Machine Learning-assisted Lipid Phase Analysis (MLLPA) is a new Python 3 module developed to analyze phase domains in a lipid membrane based on lipid molecular states. Reading standard simulation coordinate and trajectory files, the software first analyze the phase composition of the lipid membrane by using machine learning tools to label each individual molecules with respect to their state, and then decompose the simulation box using Voronoi tessellations to analyze the local environment of all the molecules of interest. MLLPA is versatile as it can read from multiple format (e.g., GROMACS, LAMMPS) and from either all-atom (e.g., CHARMM36) or coarse-grain models (e.g., Martini). It can also analyze multiple geometries of membranes (e.g., bilayers, vesicles). Finally, the software allows for training with more than two phases, allowing for multiple phase coexistence analysis 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a lipid membrane analysis 
650 4 |a machine learning 
650 4 |a molecular dynamics 
650 4 |a phase transition 
650 4 |a tessellation 
650 7 |a Membrane Lipids  |2 NLM 
700 1 |a Ruscher, Céline  |e verfasserin  |4 aut 
700 1 |a Benzerara, Olivier  |e verfasserin  |4 aut 
700 1 |a Thalmann, Fabrice  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 42(2021), 13 vom: 15. Mai, Seite 930-943  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:42  |g year:2021  |g number:13  |g day:15  |g month:05  |g pages:930-943 
856 4 0 |u http://dx.doi.org/10.1002/jcc.26508  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2021  |e 13  |b 15  |c 05  |h 930-943