A Novel Visual Representation on Text Using Diverse Conditional GAN for Visual Recognition

Automatic image visual recognition can make full use of largely available images with text descriptions on social media platforms to build large-scale image labeled datasets. In this paper, we propose a novel visual text representation, named DG-VRT (Diverse GAN-Visual Representation on Text), which...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 05., Seite 3499-3512
1. Verfasser: Hu, Tao (VerfasserIn)
Weitere Verfasser: Long, Chengjiang, Xiao, Chunxia
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM322244552
003 DE-627
005 20250301034124.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3061927  |2 doi 
028 5 2 |a pubmed25n1073.xml 
035 |a (DE-627)NLM322244552 
035 |a (NLM)33667160 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hu, Tao  |e verfasserin  |4 aut 
245 1 2 |a A Novel Visual Representation on Text Using Diverse Conditional GAN for Visual Recognition 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.03.2021 
500 |a Date Revised 12.03.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Automatic image visual recognition can make full use of largely available images with text descriptions on social media platforms to build large-scale image labeled datasets. In this paper, we propose a novel visual text representation, named DG-VRT (Diverse GAN-Visual Representation on Text), which extracts visual features from synthetic images generated by a diverse conditional Generative Adversarial Network (DCGAN) on the text, for visual recognition. The DCGAN incorporates the current state-of-the-art text-to-image GANs and generates multiple synthetic images with various prior noises conditioned on a text. Then we extract deep visual features from the generated synthetic images to explore the underlying visual concepts and provide a visual transformation on text in feature space. Finally, we combine image-level visual features, text-level features and visual features based on synthetic images together to recognize the images, and we also extend the proposed work to semantic segmentation. We conduct extensive experiments on two benchmark datasets and the experimental results demonstrate the efficacy of our proposed representation on text for visual recognition 
650 4 |a Journal Article 
700 1 |a Long, Chengjiang  |e verfasserin  |4 aut 
700 1 |a Xiao, Chunxia  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 05., Seite 3499-3512  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:30  |g year:2021  |g day:05  |g pages:3499-3512 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3061927  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 05  |h 3499-3512