Spreading Dynamics of a Precursor Film of Ionic Liquid or Water on a Micropatterned Polyelectrolyte Brush Surface

Time evolution of the microscopic wetting velocity of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) or water on a micrometer-scale line-patterned surface with a poly(3-sulfopropyl methacrylate) brush and a hydrophobic perfluoroalkyl monolayer was precisely measured by dire...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 37(2021), 10 vom: 16. März, Seite 3049-3056
1. Verfasser: Shiomoto, Shohei (VerfasserIn)
Weitere Verfasser: Higuchi, Hayato, Yamaguchi, Kazuo, Takaba, Hiromitsu, Kobayashi, Motoyasu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Time evolution of the microscopic wetting velocity of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) or water on a micrometer-scale line-patterned surface with a poly(3-sulfopropyl methacrylate) brush and a hydrophobic perfluoroalkyl monolayer was precisely measured by direct observation using optical microscopy and a selective dyeing method over a long period (178 days). When a liquid droplet was placed on the dyed line-patterned brush surface, the liquid penetrated and spread into the polymer brush layer, forming a precursor thin film that extended beyond the macroscopic contact line. The elongation proceeded in two stages by an adiabatic process followed by a diffusive process. The elongation distance X increased with time in proportion to t2.6 for water and t0.81 for EMI-TFSI during the adiabatic process. In a diffusive process, the advancing velocity of the precursor film was markedly reduced to be expressed as X ∝ t0.66 for water and X ∝ t0.21 for EMI-TFSI, indicating that the diffusive process was affected by the energy dissipation of the wetting system. The high viscosity and the strong molecular interaction of EMI-TFSI with the polymer brush gave a large entropy change during the wetting process to result in a slower spreading velocity
Beschreibung:Date Revised 16.03.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.0c03260