Applying artificial neural networks (ANNs) to solve solid waste-related issues : A critical review

Copyright © 2021 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Waste management (New York, N.Y.). - 1999. - 124(2021) vom: 01. Apr., Seite 385-402
1. Verfasser: Xu, Ankun (VerfasserIn)
Weitere Verfasser: Chang, Huimin, Xu, Yingjie, Li, Rong, Li, Xiang, Zhao, Yan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Waste management (New York, N.Y.)
Schlagworte:Journal Article Review Feedforward neural network Model configuration Prediction Solid waste artificial neural network (ANN) Solid Waste
LEADER 01000caa a22002652c 4500
001 NLM322201608
003 DE-627
005 20250301033152.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.wasman.2021.02.029  |2 doi 
028 5 2 |a pubmed25n1073.xml 
035 |a (DE-627)NLM322201608 
035 |a (NLM)33662770 
035 |a (PII)S0956-053X(21)00098-2 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Ankun  |e verfasserin  |4 aut 
245 1 0 |a Applying artificial neural networks (ANNs) to solve solid waste-related issues  |b A critical review 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.03.2021 
500 |a Date Revised 16.03.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2021 Elsevier Ltd. All rights reserved. 
520 |a Artificial neural networks (ANNs) have recently attracted significant attention in environmental areas because of their great self-learning capability and good accuracy in mapping complex nonlinear relationships. These properties of ANNs benefit their application in solving different solid waste-related issues. However, the configurations, including ANN framework, algorithm, data set partition, input parameters, hidden layer, and performance evaluation, vary and have not reached a consensus among relevant studies. To address the current state of the art of ANN application in the solid waste field and identify the commonalities of ANNs, this critical review was conducted by focusing on a modeling perspective and using 177 relevant papers published over the last decade (2010-2020). We classified the reviewed studies into four categories in terms of research scales. ANNs were found to be applied widely in waste generation and technological parameter prediction and proven effective in solving meso-microscale and microscale issues, including waste conversion, emissions, and microbial and dynamic processes. Given the difficulty of data collection in many solid waste-related issues, most studies included a data size of 101-150. For mathematical optimization, dividing the data into training-validation-test sets is preferable, and the training set is supposed to account for ~70%. A single hidden layer is usually sufficient, and the optimal numbers of hidden layer nodes most likely range from 4 to 20. This review is supposed to contribute basic and comprehensive knowledge to the researchers in general waste management and specialized ANN study on solid waste-related issues 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a Feedforward neural network 
650 4 |a Model configuration 
650 4 |a Prediction 
650 4 |a Solid waste 
650 4 |a artificial neural network (ANN) 
650 7 |a Solid Waste  |2 NLM 
700 1 |a Chang, Huimin  |e verfasserin  |4 aut 
700 1 |a Xu, Yingjie  |e verfasserin  |4 aut 
700 1 |a Li, Rong  |e verfasserin  |4 aut 
700 1 |a Li, Xiang  |e verfasserin  |4 aut 
700 1 |a Zhao, Yan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management (New York, N.Y.)  |d 1999  |g 124(2021) vom: 01. Apr., Seite 385-402  |w (DE-627)NLM098197061  |x 1879-2456  |7 nnas 
773 1 8 |g volume:124  |g year:2021  |g day:01  |g month:04  |g pages:385-402 
856 4 0 |u http://dx.doi.org/10.1016/j.wasman.2021.02.029  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 124  |j 2021  |b 01  |c 04  |h 385-402