Uncertainty-Aware Blind Image Quality Assessment in the Laboratory and Wild

Performance of blind image quality assessment (BIQA) models has been significantly boosted by end-to-end optimization of feature engineering and quality regression. Nevertheless, due to the distributional shift between images simulated in the laboratory and captured in the wild, models trained on da...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 02., Seite 3474-3486
1. Verfasser: Zhang, Weixia (VerfasserIn)
Weitere Verfasser: Ma, Kede, Zhai, Guangtao, Yang, Xiaokang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article