Bayesian Low Rank Tensor Ring for Image Recovery

Low rank tensor ring based data recovery can recover missing image entries in signal acquisition and transformation. The recently proposed tensor ring (TR) based completion algorithms generally solve the low rank optimization problem by alternating least squares method with predefined ranks, which m...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 3568-3580
Auteur principal: Long, Zhen (Auteur)
Autres auteurs: Zhu, Ce, Liu, Jiani, Liu, Yipeng
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM32214471X
003 DE-627
005 20250301031856.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3062195  |2 doi 
028 5 2 |a pubmed25n1073.xml 
035 |a (DE-627)NLM32214471X 
035 |a (NLM)33656994 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Long, Zhen  |e verfasserin  |4 aut 
245 1 0 |a Bayesian Low Rank Tensor Ring for Image Recovery 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.03.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Low rank tensor ring based data recovery can recover missing image entries in signal acquisition and transformation. The recently proposed tensor ring (TR) based completion algorithms generally solve the low rank optimization problem by alternating least squares method with predefined ranks, which may easily lead to overfitting when the unknown ranks are set too large and only a few measurements are available. In this article, we present a Bayesian low rank tensor ring completion method for image recovery by automatically learning the low-rank structure of data. A multiplicative interaction model is developed for low rank tensor ring approximation, where sparsity-inducing hierarchical prior is placed over horizontal and frontal slices of core factors. Compared with most of the existing methods, the proposed one is free of parameter-tuning, and the TR ranks can be obtained by Bayesian inference. Numerical experiments, including synthetic data, real-world color images and YaleFace dataset, show that the proposed method outperforms state-of-the-art ones, especially in terms of recovery accuracy 
650 4 |a Journal Article 
700 1 |a Zhu, Ce  |e verfasserin  |4 aut 
700 1 |a Liu, Jiani  |e verfasserin  |4 aut 
700 1 |a Liu, Yipeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 3568-3580  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:3568-3580 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3062195  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 3568-3580