Towards a Weakly Supervised Framework for 3D Point Cloud Object Detection and Annotation

It is quite laborious and costly to manually label LiDAR point cloud data for training high-quality 3D object detectors. This work proposes a weakly supervised framework which allows learning 3D detection from a few weakly annotated examples. This is achieved by a two-stage architecture design. Stag...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 8 vom: 01. Aug., Seite 4454-4468
1. Verfasser: Meng, Qinghao (VerfasserIn)
Weitere Verfasser: Wang, Wenguan, Zhou, Tianfei, Shen, Jianbing, Jia, Yunde, Van Gool, Luc
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't