Nonparametric Testing Under Randomized Sketching

A common challenge in nonparametric inference is its high computational complexity when data volume is large. In this paper, we develop computationally efficient nonparametric testing by employing a random projection strategy. In the specific kernel ridge regression setup, a simple distance-based te...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 8 vom: 01. Aug., Seite 4280-4290
1. Verfasser: Liu, Meimei (VerfasserIn)
Weitere Verfasser: Shang, Zuofeng, Yang, Yun, Cheng, Guang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
Beschreibung
Zusammenfassung:A common challenge in nonparametric inference is its high computational complexity when data volume is large. In this paper, we develop computationally efficient nonparametric testing by employing a random projection strategy. In the specific kernel ridge regression setup, a simple distance-based test statistic is proposed. Notably, we derive the minimum number of random projections that is sufficient for achieving testing optimality in terms of the minimax rate. An adaptive testing procedure is further established without prior knowledge of regularity. One technical contribution is to establish upper bounds for a range of tail sums of empirical kernel eigenvalues. Simulations and real data analysis are conducted to support our theory
Beschreibung:Date Completed 07.07.2022
Date Revised 09.07.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2021.3063223