RelightGAN : Instance-level Generative Adversarial Network for Face Illumination Transfer

Face illumination perception and processing is a significantly difficult issue especially due to asymmetric shadings, local highlights, and local shadows. This study focuses on the face illumination transfer problem, which is to transfer the illumination style from a reference face image to a target...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 3450-3460
1. Verfasser: Xu, Weihong (VerfasserIn)
Weitere Verfasser: Xie, Xiaohua, Lai, Jianhuang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM322092213
003 DE-627
005 20231225181310.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3061933  |2 doi 
028 5 2 |a pubmed24n1073.xml 
035 |a (DE-627)NLM322092213 
035 |a (NLM)33651694 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Weihong  |e verfasserin  |4 aut 
245 1 0 |a RelightGAN  |b Instance-level Generative Adversarial Network for Face Illumination Transfer 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.03.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Face illumination perception and processing is a significantly difficult issue especially due to asymmetric shadings, local highlights, and local shadows. This study focuses on the face illumination transfer problem, which is to transfer the illumination style from a reference face image to a target face image while preserving other attributes. Such an instance-level transfer task is more challenging than the domain-level one that only considers the pre-defined lighting categories. To tackle this problem, we develop an instance-level conditional Generative Adversarial Networks (GAN). Specifically, face identifier is integrated into GAN learning, which enables an individual-specific low-level visual generation. Moreover, the illumination-inspired attention mechanism is conducted to allow GAN to well handle the local lighting effect. Our method requires neither lighting categorization, 3D information, nor strict face alignment, which are often employed by traditional methods. Experiments demonstrate that our method achieves significantly better results than previous methods 
650 4 |a Journal Article 
700 1 |a Xie, Xiaohua  |e verfasserin  |4 aut 
700 1 |a Lai, Jianhuang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 3450-3460  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:3450-3460 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3061933  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 3450-3460