A Deep Ordinal Distortion Estimation Approach for Distortion Rectification

Radial distortion has widely existed in the images captured by popular wide-angle cameras and fisheye cameras. Despite the long history of distortion rectification, accurately estimating the distortion parameters from a single distorted image is still challenging. The main reason is that these param...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 26., Seite 3362-3375
1. Verfasser: Liao, Kang (VerfasserIn)
Weitere Verfasser: Lin, Chunyu, Zhao, Yao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM322046165
003 DE-627
005 20231225181210.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3061283  |2 doi 
028 5 2 |a pubmed24n1073.xml 
035 |a (DE-627)NLM322046165 
035 |a (NLM)33646951 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liao, Kang  |e verfasserin  |4 aut 
245 1 2 |a A Deep Ordinal Distortion Estimation Approach for Distortion Rectification 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.03.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Radial distortion has widely existed in the images captured by popular wide-angle cameras and fisheye cameras. Despite the long history of distortion rectification, accurately estimating the distortion parameters from a single distorted image is still challenging. The main reason is that these parameters are implicit to image features, influencing the networks to learn the distortion information fully. In this work, we propose a novel distortion rectification approach that can obtain more accurate parameters with higher efficiency. Our key insight is that distortion rectification can be cast as a problem of learning an ordinal distortion from a single distorted image. To solve this problem, we design a local-global associated estimation network that learns the ordinal distortion to approximate the realistic distortion distribution. In contrast to the implicit distortion parameters, the proposed ordinal distortion has a more explicit relationship with image features, and significantly boosts the distortion perception of neural networks. Considering the redundancy of distortion information, our approach only uses a patch of the distorted image for the ordinal distortion estimation, showing promising applications in efficient distortion rectification. In the distortion rectification field, we are the first to unify the heterogeneous distortion parameters into a learning-friendly intermediate representation through ordinal distortion, bridging the gap between image feature and distortion rectification. The experimental results demonstrate that our approach outperforms the state-of-the-art methods by a significant margin, with approximately 23% improvement on the quantitative evaluation while displaying the best performance on visual appearance 
650 4 |a Journal Article 
700 1 |a Lin, Chunyu  |e verfasserin  |4 aut 
700 1 |a Zhao, Yao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 26., Seite 3362-3375  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:26  |g pages:3362-3375 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3061283  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 26  |h 3362-3375