Polymer Induced Gelation of Aqueous Suspensions of Cellulose Nanocrystals
We investigated the gelation of cellulose nanocrystals (CNCs) in polyelectrolyte and neutral polymer solutions. Cellulose nanocrystals (CNCs) with half-ester sulfate groups produced by acid hydrolysis of wood pulp were used in this study. The microstructure of CNCs/polymer suspensions was investigat...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 10 vom: 16. März, Seite 3015-3024 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | We investigated the gelation of cellulose nanocrystals (CNCs) in polyelectrolyte and neutral polymer solutions. Cellulose nanocrystals (CNCs) with half-ester sulfate groups produced by acid hydrolysis of wood pulp were used in this study. The microstructure of CNCs/polymer suspensions was investigated in semidilute concentration regimes by selecting carboxymethyl cellulose (CMC700) as an anionic polymer and poly(ethylene oxide) (PEO600) as a neutral polymer solution. Together with quartz crystal microbalance with dissipation monitoring (QCM-D), rheology, scanning electron microscopy (SEM), and cryo-transmission electron microscopy (cryo-TEM), we characterized CNCs-polymer interactions, the suspension microstructure, and the macroscopic gel flow. Significant viscosity increases at low shear rates coupled with high shear-thinning behaviors were observed in CNC colloid-CMC700 polymer mixtures, but not those CNCs in PEO600 solutions. The apparent differences between CNCs-CMC700 and CNCs-PEO600 mixtures were due to their chain confirmations. On the basis of the evaluations from STEM, cryo-TEM, and polarized optical microscopy, we proposed that the excess CMC700 molecules in solutions result in the depletion of CNCs and the formation of anisotropic domains |
---|---|
Beschreibung: | Date Completed 23.03.2021 Date Revised 23.03.2021 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.0c02336 |