Future carbon emissions from global mangrove forest loss

© 2021 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 27(2021), 12 vom: 10. Juni, Seite 2856-2866
1. Verfasser: Adame, Maria F (VerfasserIn)
Weitere Verfasser: Connolly, Rod M, Turschwell, Mischa P, Lovelock, Catherine E, Fatoyinbo, Temilola, Lagomasino, David, Goldberg, Liza A, Holdorf, Jordan, Friess, Daniel A, Sasmito, Sigit D, Sanderman, Jonathan, Sievers, Michael, Buelow, Christina, Kauffman, J Boone, Bryan-Brown, Dale, Brown, Christopher J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Nationally Determined Contributions blue carbon carbon sequestration climate change coastal wetlands erosion greenhouse gases tropical storms Carbon 7440-44-0
LEADER 01000naa a22002652 4500
001 NLM322028140
003 DE-627
005 20231225181147.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.15571  |2 doi 
028 5 2 |a pubmed24n1073.xml 
035 |a (DE-627)NLM322028140 
035 |a (NLM)33644947 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Adame, Maria F  |e verfasserin  |4 aut 
245 1 0 |a Future carbon emissions from global mangrove forest loss 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.05.2021 
500 |a Date Revised 08.07.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 The Authors. Global Change Biology published by John Wiley & Sons Ltd. 
520 |a Mangroves have among the highest carbon densities of any tropical forest. These 'blue carbon' ecosystems can store large amounts of carbon for long periods, and their protection reduces greenhouse gas emissions and supports climate change mitigation. Incorporating mangroves into Nationally Determined Contributions to the Paris Agreement and their valuation on carbon markets requires predicting how the management of different land-uses can prevent future greenhouse gas emissions and increase CO2 sequestration. We integrated comprehensive global datasets for carbon stocks, mangrove distribution, deforestation rates, and land-use change drivers into a predictive model of mangrove carbon emissions. We project emissions and foregone soil carbon sequestration potential under 'business as usual' rates of mangrove loss. Emissions from mangrove loss could reach 2391 Tg CO2 eq by the end of the century, or 3392 Tg CO2 eq when considering foregone soil carbon sequestration. The highest emissions were predicted in southeast and south Asia (West Coral Triangle, Sunda Shelf, and the Bay of Bengal) due to conversion to aquaculture or agriculture, followed by the Caribbean (Tropical Northwest Atlantic) due to clearing and erosion, and the Andaman coast (West Myanmar) and north Brazil due to erosion. Together, these six regions accounted for 90% of the total potential CO2 eq future emissions. Mangrove loss has been slowing, and global emissions could be more than halved if reduced loss rates remain in the future. Notably, the location of global emission hotspots was consistent with every dataset used to calculate deforestation rates or with alternative assumptions about carbon storage and emissions. Our results indicate the regions in need of policy actions to address emissions arising from mangrove loss and the drivers that could be managed to prevent them 
650 4 |a Journal Article 
650 4 |a Nationally Determined Contributions 
650 4 |a blue carbon 
650 4 |a carbon sequestration 
650 4 |a climate change 
650 4 |a coastal wetlands 
650 4 |a erosion 
650 4 |a greenhouse gases 
650 4 |a tropical storms 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
700 1 |a Connolly, Rod M  |e verfasserin  |4 aut 
700 1 |a Turschwell, Mischa P  |e verfasserin  |4 aut 
700 1 |a Lovelock, Catherine E  |e verfasserin  |4 aut 
700 1 |a Fatoyinbo, Temilola  |e verfasserin  |4 aut 
700 1 |a Lagomasino, David  |e verfasserin  |4 aut 
700 1 |a Goldberg, Liza A  |e verfasserin  |4 aut 
700 1 |a Holdorf, Jordan  |e verfasserin  |4 aut 
700 1 |a Friess, Daniel A  |e verfasserin  |4 aut 
700 1 |a Sasmito, Sigit D  |e verfasserin  |4 aut 
700 1 |a Sanderman, Jonathan  |e verfasserin  |4 aut 
700 1 |a Sievers, Michael  |e verfasserin  |4 aut 
700 1 |a Buelow, Christina  |e verfasserin  |4 aut 
700 1 |a Kauffman, J Boone  |e verfasserin  |4 aut 
700 1 |a Bryan-Brown, Dale  |e verfasserin  |4 aut 
700 1 |a Brown, Christopher J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 27(2021), 12 vom: 10. Juni, Seite 2856-2866  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:12  |g day:10  |g month:06  |g pages:2856-2866 
856 4 0 |u http://dx.doi.org/10.1111/gcb.15571  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 12  |b 10  |c 06  |h 2856-2866