|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM321930479 |
003 |
DE-627 |
005 |
20231225180939.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/mrc.5145
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1073.xml
|
035 |
|
|
|a (DE-627)NLM321930479
|
035 |
|
|
|a (NLM)33634894
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Altenhof, Adam R
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Broadband adiabatic inversion cross-polarization to integer-spin nuclei with application to deuterium NMR
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 09.09.2021
|
500 |
|
|
|a Date Revised 09.09.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 John Wiley & Sons, Ltd.
|
520 |
|
|
|a Solid-state NMR (SSNMR) spectroscopy of integer-spin quadrupolar nuclei is important for the molecular-level characterization of a variety of materials and biological solids; of the integer spins, 2 H (S = 1) is by far the most widely studied, due to its usefulness in probing dynamical motions. SSNMR spectra of integer-spin nuclei often feature very broad powder patterns that arise largely from the effects of the first-order quadrupolar interaction; as such, the acquisition of high-quality spectra continues to remain a challenge. The broadband adiabatic inversion cross-polarization (BRAIN-CP) pulse sequence, which is capable of cross-polarization (CP) enhancement over large bandwidths, has found success for the acquisition of SSNMR spectra of integer-spin nuclei, including 14 N (S = 1), especially when coupled with Carr-Purcell/Meiboom-Gill pulse sequences featuring frequency-swept WURST pulses (WURST-CPMG) for T2 -based signal enhancement. However, to date, there has not been a systematic investigation of the spin dynamics underlying BRAIN-CP, nor any concrete theoretical models to aid in its parameterization for applications to integer-spin nuclei. In addition, the BRAIN-CP/WURST-CPMG scheme has not been demonstrated for generalized application to wideline or ultra-wideline (UW) 2 H SSNMR. Herein, we provide a theoretical description of the BRAIN-CP pulse sequence for spin-1/2 → spin-1 CP under static conditions, featuring a set of analytical equations describing Hartmann-Hahn matching conditions and numerical simulations that elucidate a CP mechanism involving polarization transfer, coherence exchange, and adiabatic inversion. Several experimental examples are presented for comparison with theoretical models and previously developed integer-spin CP methods, demonstrating rapid acquisition of 2 H NMR spectra from efficient broadband CP
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 2H NMR
|
650 |
|
4 |
|a deuterium NMR
|
650 |
|
4 |
|a pulse sequences
|
650 |
|
4 |
|a quadrupolar nuclei
|
650 |
|
4 |
|a solid-state NMR
|
700 |
1 |
|
|a Wi, Sungsool
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Schurko, Robert W
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Magnetic resonance in chemistry : MRC
|d 1985
|g 59(2021), 9-10 vom: 01. Sept., Seite 1009-1023
|w (DE-627)NLM098179667
|x 1097-458X
|7 nnns
|
773 |
1 |
8 |
|g volume:59
|g year:2021
|g number:9-10
|g day:01
|g month:09
|g pages:1009-1023
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/mrc.5145
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 59
|j 2021
|e 9-10
|b 01
|c 09
|h 1009-1023
|