Functional packaging of seeds

© 2021 The Authors New Phytologist © 2021 New Phytologist Foundation.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 230(2021), 6 vom: 10. Juni, Seite 2154-2163
1. Verfasser: Huss, Jessica C (VerfasserIn)
Weitere Verfasser: Gierlinger, Notburga
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Review diaspore adaptations hard plant shells physical dormancy sclerenchyma seed storage and protection serotiny tissue mechanics mehr... Water 059QF0KO0R
Beschreibung
Zusammenfassung:© 2021 The Authors New Phytologist © 2021 New Phytologist Foundation.
The encapsulation of seeds in hard coats and fruit walls (pericarp layers) fulfils protective and dispersal functions in many plant families. In angiosperms, packaging structures possess a remarkable range of different morphologies and functionalities, as illustrated by thermo and hygro-responsive seed pods and appendages, as well as mechanically strong and water-impermeable shells. Key to these different functionalities are characteristic structural arrangements and chemical modifications of the underlying sclerenchymatous tissues. Although many ecological aspects of hard seed encapsulation have been well documented, a detailed understanding of the relationship between tissue structure and function only recently started to emerge, especially in the context of environmentally driven fruit opening and seed dispersal (responsive encapsulations) and the outstanding durability of some seed coats and indehiscent fruits (static encapsulations). In this review, we focus on the tissue properties of these two systems, with particular consideration of water interactions, mechanical resistance, and force generation. Common principles, as well as unique adaptations, are discussed in different plant species. Understanding how plants integrate a broad range of functions and properties for seed protection during storage and dispersal plays a central role for seed conservation, population dynamics, and plant-based material developments
Beschreibung:Date Completed 04.06.2021
Date Revised 08.07.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.17299