Deblurring Dynamic Scenes via Spatially Varying Recurrent Neural Networks

Deblurring images captured in dynamic scenes is challenging as the motion blurs are spatially varying caused by camera shakes and object movements. In this paper, we propose a spatially varying neural network to deblur dynamic scenes. The proposed model is composed of three deep convolutional neural...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 8 vom: 23. Aug., Seite 3974-3987
1. Verfasser: Ren, Wenqi (VerfasserIn)
Weitere Verfasser: Zhang, Jiawei, Pan, Jinshan, Liu, Sifei, Ren, Jimmy S, Du, Junping, Cao, Xiaochun, Yang, Ming-Hsuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM321795202
003 DE-627
005 20250301015001.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3061604  |2 doi 
028 5 2 |a pubmed25n1072.xml 
035 |a (DE-627)NLM321795202 
035 |a (NLM)33621173 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ren, Wenqi  |e verfasserin  |4 aut 
245 1 0 |a Deblurring Dynamic Scenes via Spatially Varying Recurrent Neural Networks 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.07.2022 
500 |a Date Revised 09.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Deblurring images captured in dynamic scenes is challenging as the motion blurs are spatially varying caused by camera shakes and object movements. In this paper, we propose a spatially varying neural network to deblur dynamic scenes. The proposed model is composed of three deep convolutional neural networks (CNNs) and a recurrent neural network (RNN). The RNN is used as a deconvolution operator on feature maps extracted from the input image by one of the CNNs. Another CNN is used to learn the spatially varying weights for the RNN. As a result, the RNN is spatial-aware and can implicitly model the deblurring process with spatially varying kernels. To better exploit properties of the spatially varying RNN, we develop both one-dimensional and two-dimensional RNNs for deblurring. The third component, based on a CNN, reconstructs the final deblurred feature maps into a restored image. In addition, the whole network is end-to-end trainable. Quantitative and qualitative evaluations on benchmark datasets demonstrate that the proposed method performs favorably against the state-of-the-art deblurring algorithms 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zhang, Jiawei  |e verfasserin  |4 aut 
700 1 |a Pan, Jinshan  |e verfasserin  |4 aut 
700 1 |a Liu, Sifei  |e verfasserin  |4 aut 
700 1 |a Ren, Jimmy S  |e verfasserin  |4 aut 
700 1 |a Du, Junping  |e verfasserin  |4 aut 
700 1 |a Cao, Xiaochun  |e verfasserin  |4 aut 
700 1 |a Yang, Ming-Hsuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 8 vom: 23. Aug., Seite 3974-3987  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:44  |g year:2022  |g number:8  |g day:23  |g month:08  |g pages:3974-3987 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3061604  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 8  |b 23  |c 08  |h 3974-3987