LocalDrop : A Hybrid Regularization for Deep Neural Networks

In neural networks, developing regularization algorithms to settle overfitting is one of the major study areas. We propose a new approach for the regularization of neural networks by the local Rademacher complexity called LocalDrop. A new regularization function for both fully-connected networks (FC...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 7 vom: 23. Juli, Seite 3590-3601
Auteur principal: Lu, Ziqing (Auteur)
Autres auteurs: Xu, Chang, Du, Bo, Ishida, Takashi, Zhang, Lefei, Sugiyama, Masashi
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM321795180
003 DE-627
005 20250301015000.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3061463  |2 doi 
028 5 2 |a pubmed25n1072.xml 
035 |a (DE-627)NLM321795180 
035 |a (NLM)33621170 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lu, Ziqing  |e verfasserin  |4 aut 
245 1 0 |a LocalDrop  |b A Hybrid Regularization for Deep Neural Networks 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.06.2022 
500 |a Date Revised 09.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In neural networks, developing regularization algorithms to settle overfitting is one of the major study areas. We propose a new approach for the regularization of neural networks by the local Rademacher complexity called LocalDrop. A new regularization function for both fully-connected networks (FCNs) and convolutional neural networks (CNNs), including drop rates and weight matrices, has been developed based on the proposed upper bound of the local Rademacher complexity by the strict mathematical deduction. The analyses of dropout in FCNs and DropBlock in CNNs with keep rate matrices in different layers are also included in the complexity analyses. With the new regularization function, we establish a two-stage procedure to obtain the optimal keep rate matrix and weight matrix to realize the whole training model. Extensive experiments have been conducted to demonstrate the effectiveness of LocalDrop in different models by comparing it with several algorithms and the effects of different hyperparameters on the final performances 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Xu, Chang  |e verfasserin  |4 aut 
700 1 |a Du, Bo  |e verfasserin  |4 aut 
700 1 |a Ishida, Takashi  |e verfasserin  |4 aut 
700 1 |a Zhang, Lefei  |e verfasserin  |4 aut 
700 1 |a Sugiyama, Masashi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 7 vom: 23. Juli, Seite 3590-3601  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:44  |g year:2022  |g number:7  |g day:23  |g month:07  |g pages:3590-3601 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3061463  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 7  |b 23  |c 07  |h 3590-3601