Natural Language Video Localization : A Revisit in Span-Based Question Answering Framework

Natural Language Video Localization (NLVL) aims to locate a target moment from an untrimmed video that semantically corresponds to a text query. Existing approaches mainly solve the NLVL problem from the perspective of computer vision by formulating it as ranking, anchor, or regression tasks. These...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 8 vom: 23. Aug., Seite 4252-4266
1. Verfasser: Zhang, Hao (VerfasserIn)
Weitere Verfasser: Sun, Aixin, Jing, Wei, Zhen, Liangli, Zhou, Joey Tianyi, Goh, Rick Siow Mong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM321795121
003 DE-627
005 20231225180641.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3060449  |2 doi 
028 5 2 |a pubmed24n1072.xml 
035 |a (DE-627)NLM321795121 
035 |a (NLM)33621165 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Hao  |e verfasserin  |4 aut 
245 1 0 |a Natural Language Video Localization  |b A Revisit in Span-Based Question Answering Framework 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Natural Language Video Localization (NLVL) aims to locate a target moment from an untrimmed video that semantically corresponds to a text query. Existing approaches mainly solve the NLVL problem from the perspective of computer vision by formulating it as ranking, anchor, or regression tasks. These methods suffer from large performance degradation when localizing on long videos. In this work, we address the NLVL from a new perspective, i.e., span-based question answering (QA), by treating the input video as a text passage. We propose a video span localizing network (VSLNet), on top of the standard span-based QA framework (named VSLBase), to address NLVL. VSLNet tackles the differences between NLVL and span-based QA through a simple yet effective query-guided highlighting (QGH) strategy. QGH guides VSLNet to search for the matching video span within a highlighted region. To address the performance degradation on long videos, we further extend VSLNet to VSLNet-L by applying a multi-scale split-and-concatenation strategy. VSLNet-L first splits the untrimmed video into short clip segments; then, it predicts which clip segment contains the target moment and suppresses the importance of other segments. Finally, the clip segments are concatenated, with different confidences, to locate the target moment accurately. Extensive experiments on three benchmark datasets show that the proposed VSLNet and VSLNet-L outperform the state-of-the-art methods; VSLNet-L addresses the issue of performance degradation on long videos. Our study suggests that the span-based QA framework is an effective strategy to solve the NLVL problem 
650 4 |a Journal Article 
700 1 |a Sun, Aixin  |e verfasserin  |4 aut 
700 1 |a Jing, Wei  |e verfasserin  |4 aut 
700 1 |a Zhen, Liangli  |e verfasserin  |4 aut 
700 1 |a Zhou, Joey Tianyi  |e verfasserin  |4 aut 
700 1 |a Goh, Rick Siow Mong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 8 vom: 23. Aug., Seite 4252-4266  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:8  |g day:23  |g month:08  |g pages:4252-4266 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3060449  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 8  |b 23  |c 08  |h 4252-4266