End-to-End Learnt Image Compression via Non-Local Attention Optimization and Improved Context Modeling
This article proposes an end-to-end learnt lossy image compression approach, which is built on top of the deep nerual network (DNN)-based variational auto-encoder (VAE) structure with Non-Local Attention optimization and Improved Context modeling (NLAIC). Our NLAIC 1) embeds non-local network operat...
Ausführliche Beschreibung
Bibliographische Detailangaben
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 3179-3191
|
1. Verfasser: |
Chen, Tong
(VerfasserIn) |
Weitere Verfasser: |
Liu, Haojie,
Ma, Zhan,
Shen, Qiu,
Cao, Xun,
Wang, Yao |
Format: | Online-Aufsatz
|
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|
Schlagworte: | Journal Article |