|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM321637291 |
003 |
DE-627 |
005 |
20240725232343.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202006946
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1481.xml
|
035 |
|
|
|a (DE-627)NLM321637291
|
035 |
|
|
|a (NLM)33604942
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Xin, An
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Growing Living Composites with Ordered Microstructures and Exceptional Mechanical Properties
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 24.07.2024
|
500 |
|
|
|a Date Revised 24.07.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2021 Wiley-VCH GmbH.
|
520 |
|
|
|a Living creatures are continuous sources of inspiration for designing synthetic materials. However, living creatures are typically different from synthetic materials because the former consist of living cells to support their growth and regeneration. Although natural systems can grow materials with sophisticated microstructures, how to harness living cells to grow materials with predesigned microstructures in engineering systems remains largely elusive. Here, an attempt to exploit living bacteria and 3D-printed materials to grow bionic mineralized composites with ordered microstructures is reported. The bionic composites exhibit outstanding specific strength and fracture toughness, which are comparable to natural composites, and exceptional energy absorption capability superior to both natural and artificial counterparts. This report opens the door for 3D-architectured hybrid synthetic-living materials with living ordered microstructures and exceptional properties
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Bouligand structures
|
650 |
|
4 |
|a living materials
|
650 |
|
4 |
|a mineral growth
|
650 |
|
4 |
|a structural composites
|
700 |
1 |
|
|a Su, Yipin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Feng, Shengwei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yan, Minliang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yu, Kunhao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Feng, Zhangzhengrong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hoon Lee, Kyung
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Lizhi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Qiming
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 33(2021), 13 vom: 18. Apr., Seite e2006946
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2021
|g number:13
|g day:18
|g month:04
|g pages:e2006946
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202006946
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2021
|e 13
|b 18
|c 04
|h e2006946
|