|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM321637135 |
003 |
DE-627 |
005 |
20231225180304.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202007819
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1072.xml
|
035 |
|
|
|a (DE-627)NLM321637135
|
035 |
|
|
|a (NLM)33604926
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Lin, Yung-Chang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Formation of Highly Doped Nanostripes in 2D Transition Metal Dichalcogenides via a Dislocation Climb Mechanism
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 24.03.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 Wiley-VCH GmbH.
|
520 |
|
|
|a Doping of materials beyond the dopant solubility limit remains a challenge, especially when spatially nonuniform doping is required. In 2D materials with a high surface-to-volume ratio, such as transition metal dichalcogenides, various post-synthesis approaches to doping have been demonstrated, but full control over spatial distribution of dopants remains a challenge. A post-growth doping of single layers of WSe2 is performed by adding transition metal (TM) atoms in a two-step process, which includes annealing followed by deposition of dopants together with Se or S. The Ti, V, Cr, and Fe impurities at W sites are identified by using transmission electron microscopy and electron energy loss spectroscopy. Remarkably, an extremely high density (6.4-15%) of various types of impurity atoms is achieved. The dopants are revealed to be largely confined within nanostripes embedded in the otherwise pristine WSe2 . Density functional theory calculations show that the dislocations assist the incorporation of the dopant during their climb and give rise to stripes of TM dopant atoms. This work demonstrates a possible spatially controllable doping strategy to achieve the desired local electronic, magnetic, and optical properties in 2D materials
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a dislocation migration
|
650 |
|
4 |
|a doping
|
650 |
|
4 |
|a nanostripes
|
650 |
|
4 |
|a transition metal dichalcogenides
|
700 |
1 |
|
|a Karthikeyan, Jeyakumar
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chang, Yao-Pang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Shisheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kretschmer, Silvan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Komsa, Hannu-Pekka
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chiu, Po-Wen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Krasheninnikov, Arkady V
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Suenaga, Kazu
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 33(2021), 12 vom: 03. März, Seite e2007819
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2021
|g number:12
|g day:03
|g month:03
|g pages:e2007819
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202007819
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2021
|e 12
|b 03
|c 03
|h e2007819
|