Comparison of methods for nitrous oxide emission estimation in full-scale activated sludge

Nitrous oxide (N2O) gas transfer was studied in a full-scale process to correlate liquid phase N2O concentrations with gas phase N2O emissions and compare methods of determining the volumetric mass transfer coefficient, KLa. Off-gas and liquid phase monitoring were conducted at the Viikinmäki wastew...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 83(2021), 3 vom: 25. Feb., Seite 641-651
1. Verfasser: Myers, Shanna (VerfasserIn)
Weitere Verfasser: Mikola, Anna, Blomberg, Kati, Kuokkanen, Anna, Rosso, Diego
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Sewage Waste Water Nitrous Oxide K50XQU1029
Beschreibung
Zusammenfassung:Nitrous oxide (N2O) gas transfer was studied in a full-scale process to correlate liquid phase N2O concentrations with gas phase N2O emissions and compare methods of determining the volumetric mass transfer coefficient, KLa. Off-gas and liquid phase monitoring were conducted at the Viikinmäki wastewater treatment plant (WWTP) over a two-week period using a novel method for simultaneous measurement of dissolved and off-gas N2O and O2 from the same location. KLa was calculated with three methods: empirically, based on aeration superficial velocity, from experimentally determined O2 KLa, and using a static value of best fit. The findings of this study indicated trends in local emitted N2O consistently matched trends in local dissolved N2O, but the magnitude of N2O emissions could not be accurately estimated without correction. After applying a static correction factor, the O2 method, using experimentally determined O2 KLa, provided the best N2O emission estimation over the data collection period. N2O emissions estimated using the O2 method had a root mean square error (RMSE) of 70.5 compared against measured concentrations ranging from 3 to 1,913 ppm and a maximum 28% error. The KLa value, and therefore the method of KLa determination, had a significant impact on estimated emissions
Beschreibung:Date Completed 22.02.2021
Date Revised 07.12.2022
published: Print
Citation Status MEDLINE
ISSN:0273-1223
DOI:10.2166/wst.2021.033