Deep Coupled Feedback Network for Joint Exposure Fusion and Image Super-Resolution

Nowadays, people are getting used to taking photos to record their daily life, however, the photos are actually not consistent with the real natural scenes. The two main differences are that the photos tend to have low dynamic range (LDR) and low resolution (LR), due to the inherent imaging limitati...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 18., Seite 3098-3112
1. Verfasser: Deng, Xin (VerfasserIn)
Weitere Verfasser: Zhang, Yutong, Xu, Mai, Gu, Shuhang, Duan, Yiping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM321591364
003 DE-627
005 20250301005623.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3058764  |2 doi 
028 5 2 |a pubmed25n1071.xml 
035 |a (DE-627)NLM321591364 
035 |a (NLM)33600315 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Deng, Xin  |e verfasserin  |4 aut 
245 1 0 |a Deep Coupled Feedback Network for Joint Exposure Fusion and Image Super-Resolution 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.02.2021 
500 |a Date Revised 25.02.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Nowadays, people are getting used to taking photos to record their daily life, however, the photos are actually not consistent with the real natural scenes. The two main differences are that the photos tend to have low dynamic range (LDR) and low resolution (LR), due to the inherent imaging limitations of cameras. The multi-exposure image fusion (MEF) and image super-resolution (SR) are two widely-used techniques to address these two issues. However, they are usually treated as independent researches. In this paper, we propose a deep Coupled Feedback Network (CF-Net) to achieve MEF and SR simultaneously. Given a pair of extremely over-exposed and under-exposed LDR images with low-resolution, our CF-Net is able to generate an image with both high dynamic range (HDR) and high-resolution. Specifically, the CF-Net is composed of two coupled recursive sub-networks, with LR over-exposed and under-exposed images as inputs, respectively. Each sub-network consists of one feature extraction block (FEB), one super-resolution block (SRB) and several coupled feedback blocks (CFB). The FEB and SRB are to extract high-level features from the input LDR image, which are required to be helpful for resolution enhancement. The CFB is arranged after SRB, and its role is to absorb the learned features from the SRBs of the two sub-networks, so that it can produce a high-resolution HDR image. We have a series of CFBs in order to progressively refine the fused high-resolution HDR image. Extensive experimental results show that our CF-Net drastically outperforms other state-of-the-art methods in terms of both SR accuracy and fusion performance. The software code is available here https://github.com/ytZhang99/CF-Net 
650 4 |a Journal Article 
700 1 |a Zhang, Yutong  |e verfasserin  |4 aut 
700 1 |a Xu, Mai  |e verfasserin  |4 aut 
700 1 |a Gu, Shuhang  |e verfasserin  |4 aut 
700 1 |a Duan, Yiping  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 18., Seite 3098-3112  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:30  |g year:2021  |g day:18  |g pages:3098-3112 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3058764  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 18  |h 3098-3112