|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM321591356 |
003 |
DE-627 |
005 |
20231225180141.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2021.3058570
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1071.xml
|
035 |
|
|
|a (DE-627)NLM321591356
|
035 |
|
|
|a (NLM)33600314
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Yiqian
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Robust Content-Adaptive Global Registration for Multimodal Retinal Images Using Weakly Supervised Deep-Learning Framework
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 02.08.2021
|
500 |
|
|
|a Date Revised 02.08.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Multimodal retinal imaging plays an important role in ophthalmology. We propose a content-adaptive multimodal retinal image registration method in this paper that focuses on the globally coarse alignment and includes three weakly supervised neural networks for vessel segmentation, feature detection and description, and outlier rejection. We apply the proposed framework to register color fundus images with infrared reflectance and fluorescein angiography images, and compare it with several conventional and deep learning methods. Our proposed framework demonstrates a significant improvement in robustness and accuracy reflected by a higher success rate and Dice coefficient compared with other methods
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Zhang, Junkang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cavichini, Melina
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bartsch, Dirk-Uwe G
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Freeman, William R
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nguyen, Truong Q
|e verfasserin
|4 aut
|
700 |
1 |
|
|a An, Cheolhong
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 30(2021) vom: 18., Seite 3167-3178
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2021
|g day:18
|g pages:3167-3178
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2021.3058570
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2021
|b 18
|h 3167-3178
|