Robust Content-Adaptive Global Registration for Multimodal Retinal Images Using Weakly Supervised Deep-Learning Framework

Multimodal retinal imaging plays an important role in ophthalmology. We propose a content-adaptive multimodal retinal image registration method in this paper that focuses on the globally coarse alignment and includes three weakly supervised neural networks for vessel segmentation, feature detection...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 18., Seite 3167-3178
1. Verfasser: Wang, Yiqian (VerfasserIn)
Weitere Verfasser: Zhang, Junkang, Cavichini, Melina, Bartsch, Dirk-Uwe G, Freeman, William R, Nguyen, Truong Q, An, Cheolhong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM321591356
003 DE-627
005 20231225180141.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3058570  |2 doi 
028 5 2 |a pubmed24n1071.xml 
035 |a (DE-627)NLM321591356 
035 |a (NLM)33600314 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Yiqian  |e verfasserin  |4 aut 
245 1 0 |a Robust Content-Adaptive Global Registration for Multimodal Retinal Images Using Weakly Supervised Deep-Learning Framework 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.08.2021 
500 |a Date Revised 02.08.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Multimodal retinal imaging plays an important role in ophthalmology. We propose a content-adaptive multimodal retinal image registration method in this paper that focuses on the globally coarse alignment and includes three weakly supervised neural networks for vessel segmentation, feature detection and description, and outlier rejection. We apply the proposed framework to register color fundus images with infrared reflectance and fluorescein angiography images, and compare it with several conventional and deep learning methods. Our proposed framework demonstrates a significant improvement in robustness and accuracy reflected by a higher success rate and Dice coefficient compared with other methods 
650 4 |a Journal Article 
700 1 |a Zhang, Junkang  |e verfasserin  |4 aut 
700 1 |a Cavichini, Melina  |e verfasserin  |4 aut 
700 1 |a Bartsch, Dirk-Uwe G  |e verfasserin  |4 aut 
700 1 |a Freeman, William R  |e verfasserin  |4 aut 
700 1 |a Nguyen, Truong Q  |e verfasserin  |4 aut 
700 1 |a An, Cheolhong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 18., Seite 3167-3178  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:18  |g pages:3167-3178 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3058570  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 18  |h 3167-3178