Macrocyclic-Amphiphile-Based Self-Assembled Nanoparticles for Ratiometric Delivery of Therapeutic Combinations to Tumors

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 12 vom: 01. März, Seite e2007719
1. Verfasser: Zhang, Zhanzhan (VerfasserIn)
Weitere Verfasser: Yue, Yu-Xin, Xu, Lina, Wang, Ying, Geng, Wen-Chao, Li, Juan-Juan, Kong, Xiang-Lei, Zhao, Xinzhi, Zheng, Yadan, Zhao, Yu, Shi, Linqi, Guo, Dong-Sheng, Liu, Yang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article combination chemotherapy hypoxia macrocyclic amphiphiles molecular recognition ratiometric delivery Macrocyclic Compounds Drug Carriers Antineoplastic Agents Doxorubicin 80168379AG
Beschreibung
Zusammenfassung:© 2021 Wiley-VCH GmbH.
Combination chemotherapy refers to the use of multiple drugs to treat cancer. In this therapy, the optimal ratio of the drugs is essential to achieve drug synergism and the desired therapeutic effects. However, most delivery strategies are unable to precisely control the ratio of the drugs during the drug loading and delivery processes, resulting in inefficient synergy and unpredictable efficacy. Herein, a macrocyclic-amphiphile-based self-assembled nanoparticle (MASN) that achieves precise loading and ratiometric delivery of therapeutic combinations is presented. By integrating multiple macrocyclic cavities within a single nanoparticle, the MASN can load multiple drug molecules via the host-guest interaction, and the ratio of the drugs loaded can be predicted with their initial concentrations and characteristic binding affinity. Moreover, MASNs are readily degraded under a hypoxic microenvironment, allowing spontaneous release of the drugs upon reaching tumor tissues. With precise drug loading and controlled release mechanisms, MASNs achieve ratiometric delivery of multiple commercial drugs to tumors, thereby achieving optimal anti-tumor effects. Since the optimal drug ratio of a therapeutic combination can be quickly determined in vitro, MASNs can translate this optimal ratio to the therapeutic benefits in vivo, providing a potential platform for the rapid development of effective combination cancer therapies involving multiple drugs
Beschreibung:Date Completed 24.07.2024
Date Revised 24.07.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202007719