Spatial-Spectral Structured Sparse Low-Rank Representation for Hyperspectral Image Super-Resolution

Hyperspectral image super-resolution by fusing high-resolution multispectral image (HR-MSI) and low-resolution hyperspectral image (LR-HSI) aims at reconstructing high resolution spatial-spectral information of the scene. Existing methods mostly based on spectral unmixing and sparse representation a...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 3084-3097
Auteur principal: Xue, Jize (Auteur)
Autres auteurs: Zhao, Yong-Qiang, Bu, Yuanyang, Liao, Wenzhi, Chan, Jonathan Cheung-Wai, Philips, Wilfried
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
Description
Résumé:Hyperspectral image super-resolution by fusing high-resolution multispectral image (HR-MSI) and low-resolution hyperspectral image (LR-HSI) aims at reconstructing high resolution spatial-spectral information of the scene. Existing methods mostly based on spectral unmixing and sparse representation are often developed from a low-level vision task perspective, they cannot sufficiently make use of the spatial and spectral priors available from higher-level analysis. To this issue, this paper proposes a novel HSI super-resolution method that fully considers the spatial/spectral subspace low-rank relationships between available HR-MSI/LR-HSI and latent HSI. Specifically, it relies on a new subspace clustering method named "structured sparse low-rank representation" (SSLRR), to represent the data samples as linear combinations of the bases in a given dictionary, where the sparse structure is induced by low-rank factorization for the affinity matrix. Then we exploit the proposed SSLRR model to learn the SSLRR along spatial/spectral domain from the MSI/HSI inputs. By using the learned spatial and spectral low-rank structures, we formulate the proposed HSI super-resolution model as a variational optimization problem, which can be readily solved by the ADMM algorithm. Compared with state-of-the-art hyperspectral super-resolution methods, the proposed method shows better performance on three benchmark datasets in terms of both visual and quantitative evaluation
Description:Date Revised 25.02.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2021.3058590