Local Correspondence Network for Weakly Supervised Temporal Sentence Grounding

Weakly supervised temporal sentence grounding has better scalability and practicability than fully supervised methods in real-world application scenarios. However, most of existing methods cannot model the fine-grained video-text local correspondences well and do not have effective supervision infor...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 3252-3262
Auteur principal: Yang, Wenfei (Auteur)
Autres auteurs: Zhang, Tianzhu, Zhang, Yongdong, Wu, Feng
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
Description
Résumé:Weakly supervised temporal sentence grounding has better scalability and practicability than fully supervised methods in real-world application scenarios. However, most of existing methods cannot model the fine-grained video-text local correspondences well and do not have effective supervision information for correspondence learning, thus yielding unsatisfying performance. To address the above issues, we propose an end-to-end Local Correspondence Network (LCNet) for weakly supervised temporal sentence grounding. The proposed LCNet enjoys several merits. First, we represent video and text features in a hierarchical manner to model the fine-grained video-text correspondences. Second, we design a self-supervised cycle-consistent loss as a learning guidance for video and text matching. To the best of our knowledge, this is the first work to fully explore the fine-grained correspondences between video and text for temporal sentence grounding by using self-supervised learning. Extensive experimental results on two benchmark datasets demonstrate that the proposed LCNet significantly outperforms existing weakly supervised methods
Description:Date Revised 03.03.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2021.3058614