Spatially Constrained Online Dictionary Learning for Source Separation

Whether in medical imaging, astronomy or remote sensing, the data are increasingly complex. In addition to the spatial dimension, the data may contain temporal or spectral information that characterises the different sources present in the image. The compromise between spatial resolution and tempora...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 3217-3228
1. Verfasser: Bhanot, Argheesh (VerfasserIn)
Weitere Verfasser: Meillier, Celine, Heitz, Fabrice, Harsan, Laura
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM321551168
003 DE-627
005 20231225180040.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3058558  |2 doi 
028 5 2 |a pubmed24n1071.xml 
035 |a (DE-627)NLM321551168 
035 |a (NLM)33596174 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bhanot, Argheesh  |e verfasserin  |4 aut 
245 1 0 |a Spatially Constrained Online Dictionary Learning for Source Separation 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.03.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Whether in medical imaging, astronomy or remote sensing, the data are increasingly complex. In addition to the spatial dimension, the data may contain temporal or spectral information that characterises the different sources present in the image. The compromise between spatial resolution and temporal/spectral resolution is often at the expense of spatial resolution, resulting in a potentially large mixing of sources in the same pixel/voxel. Source separation methods must incorporate spatial information to estimate the contribution and signature of each source in the image. We consider the particular case where the position of the sources is approximately known thanks to external information that may come from another imaging modality or from a priori knowledge. We propose a spatially constrained dictionary learning source separation algorithm that uses e.g. high resolution segmentation map or regions of interest defined by an expert to regularise the source contribution estimation. The originality of the proposed model is the replacement of the sparsity constraint classically expressed in the form of an l1 penalty on the localisation of sources by an indicator function exploiting the external source localisation information. The model is easily adaptable to different applications by adding or modifying the constraints on the sources properties in the optimisation problem. The performance of this algorithm has been validated on synthetic and quasi-real data, before being applied to real data previously analysed by other methods of the literature in order to compare the results. To illustrate the potential of the approach, different applications have been considered, from scintigraphic data to astronomy or fMRI data 
650 4 |a Journal Article 
700 1 |a Meillier, Celine  |e verfasserin  |4 aut 
700 1 |a Heitz, Fabrice  |e verfasserin  |4 aut 
700 1 |a Harsan, Laura  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 3217-3228  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:3217-3228 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3058558  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 3217-3228