Image Segmentation Using Deep Learning : A Survey

Image segmentation is a key task in computer vision and image processing with important applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among others, and numerous segmentation algorithms are found in...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 7 vom: 01. Juli, Seite 3523-3542
Auteur principal: Minaee, Shervin (Auteur)
Autres auteurs: Boykov, Yuri, Porikli, Fatih, Plaza, Antonio, Kehtarnavaz, Nasser, Terzopoulos, Demetri
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Review
LEADER 01000caa a22002652c 4500
001 NLM321551141
003 DE-627
005 20250301004540.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3059968  |2 doi 
028 5 2 |a pubmed25n1071.xml 
035 |a (DE-627)NLM321551141 
035 |a (NLM)33596172 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Minaee, Shervin  |e verfasserin  |4 aut 
245 1 0 |a Image Segmentation Using Deep Learning  |b A Survey 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.06.2022 
500 |a Date Revised 09.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Image segmentation is a key task in computer vision and image processing with important applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among others, and numerous segmentation algorithms are found in the literature. Against this backdrop, the broad success of deep learning (DL) has prompted the development of new image segmentation approaches leveraging DL models. We provide a comprehensive review of this recent literature, covering the spectrum of pioneering efforts in semantic and instance segmentation, including convolutional pixel-labeling networks, encoder-decoder architectures, multiscale and pyramid-based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the relationships, strengths, and challenges of these DL-based segmentation models, examine the widely used datasets, compare performances, and discuss promising research directions 
650 4 |a Journal Article 
650 4 |a Review 
700 1 |a Boykov, Yuri  |e verfasserin  |4 aut 
700 1 |a Porikli, Fatih  |e verfasserin  |4 aut 
700 1 |a Plaza, Antonio  |e verfasserin  |4 aut 
700 1 |a Kehtarnavaz, Nasser  |e verfasserin  |4 aut 
700 1 |a Terzopoulos, Demetri  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 7 vom: 01. Juli, Seite 3523-3542  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:44  |g year:2022  |g number:7  |g day:01  |g month:07  |g pages:3523-3542 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3059968  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 7  |b 01  |c 07  |h 3523-3542