Efficient Low-Grade Heat Harvesting Enabled by Tuning the Hydration Entropy in an Electrochemical System

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 13 vom: 26. Apr., Seite e2004717
1. Verfasser: Gao, Caitian (VerfasserIn)
Weitere Verfasser: Liu, Yezhou, Chen, Bingbing, Yun, Jeonghun, Feng, Erxi, Kim, Yeongae, Kim, Moobum, Choi, Ahreum, Lee, Hyun-Wook, Lee, Seok Woo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article energy conversion efficiency hydration entropy low-grade heat harvesting monovalent cations thermally regenerative electrochemical cycle
Beschreibung
Zusammenfassung:© 2021 Wiley-VCH GmbH.
Harvesting of low-grade heat (<100 °C) is promising, but its application is hampered by a lack of efficient and low-cost systems. The thermally regenerative electrochemical cycle (TREC) is a potential alternative system with high energy-conversion efficiency. Here, the temperature coefficient (α), which is a key factor in a TREC, is studied by tuning the hydration entropy of the electrochemical reaction. The change of α in copper hexacyanoferrate (CuHCFe) with intercalation of different monovalent cations (Na+ , K+ , Rb+ , and Cs+ ) and a larger α value of -1.004 mV K-1 being found in the Rb+ system are observed. With a view to practical application, a full cell is constructed for low-grade heat harvesting. The resultant ηe is 4.34% when TREC operates between 10 and 50 °C, which further reaches 6.21% when 50% heat recuperation is considered. This efficiency equals to 50% of the Carnot efficiency, which is thought to be the highest ηe reported for low-grade heat harvesting systems. This study provides a fundamental understanding of the mechanisms governing the TREC, and the demonstrated efficient system paves the way for low-grade heat harvesting
Beschreibung:Date Revised 02.04.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202004717