Text Compression-Aided Transformer Encoding

Text encoding is one of the most important steps in Natural Language Processing (NLP). It has been done well by the self-attention mechanism in the current state-of-the-art Transformer encoder, which has brought about significant improvements in the performance of many NLP tasks. Though the Transfor...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 7 vom: 12. Juli, Seite 3840-3857
1. Verfasser: Li, Zuchao (VerfasserIn)
Weitere Verfasser: Zhang, Zhuosheng, Zhao, Hai, Wang, Rui, Chen, Kehai, Utiyama, Masao, Sumita, Eiichiro
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM32137312X
003 DE-627
005 20231225175653.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3058341  |2 doi 
028 5 2 |a pubmed24n1071.xml 
035 |a (DE-627)NLM32137312X 
035 |a (NLM)33577448 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Zuchao  |e verfasserin  |4 aut 
245 1 0 |a Text Compression-Aided Transformer Encoding 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.06.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Text encoding is one of the most important steps in Natural Language Processing (NLP). It has been done well by the self-attention mechanism in the current state-of-the-art Transformer encoder, which has brought about significant improvements in the performance of many NLP tasks. Though the Transformer encoder may effectively capture general information in its resulting representations, the backbone information, meaning the gist of the input text, is not specifically focused on. In this paper, we propose explicit and implicit text compression approaches to enhance the Transformer encoding and evaluate models using this approach on several typical downstream tasks that rely on the encoding heavily. Our explicit text compression approaches use dedicated models to compress text, while our implicit text compression approach simply adds an additional module to the main model to handle text compression. We propose three ways of integration, namely backbone source-side fusion, target-side fusion, and both-side fusion, to integrate the backbone information into Transformer-based models for various downstream tasks. Our evaluation on benchmark datasets shows that the proposed explicit and implicit text compression approaches improve results in comparison to strong baselines. We therefore conclude, when comparing the encodings to the baseline models, text compression helps the encoders to learn better language representations 
650 4 |a Journal Article 
700 1 |a Zhang, Zhuosheng  |e verfasserin  |4 aut 
700 1 |a Zhao, Hai  |e verfasserin  |4 aut 
700 1 |a Wang, Rui  |e verfasserin  |4 aut 
700 1 |a Chen, Kehai  |e verfasserin  |4 aut 
700 1 |a Utiyama, Masao  |e verfasserin  |4 aut 
700 1 |a Sumita, Eiichiro  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 7 vom: 12. Juli, Seite 3840-3857  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:7  |g day:12  |g month:07  |g pages:3840-3857 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3058341  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 7  |b 12  |c 07  |h 3840-3857