Pyramidal Multiple Instance Detection Network With Mask Guided Self-Correction for Weakly Supervised Object Detection

Weakly supervised object detection has attracted more and more attention as it only needs image-level annotations for training object detectors. A popular solution to this task is to train a multiple instance detection network (MIDN) which integrates multiple instance learning into a deep convolutio...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 11., Seite 3029-3040
1. Verfasser: Xu, Yunqiu (VerfasserIn)
Weitere Verfasser: Zhou, Chunluan, Yu, Xin, Xiao, Bin, Yang, Yi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM321311264
003 DE-627
005 20231225175535.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3056887  |2 doi 
028 5 2 |a pubmed24n1071.xml 
035 |a (DE-627)NLM321311264 
035 |a (NLM)33571093 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Yunqiu  |e verfasserin  |4 aut 
245 1 0 |a Pyramidal Multiple Instance Detection Network With Mask Guided Self-Correction for Weakly Supervised Object Detection 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 19.02.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Weakly supervised object detection has attracted more and more attention as it only needs image-level annotations for training object detectors. A popular solution to this task is to train a multiple instance detection network (MIDN) which integrates multiple instance learning into a deep convolutional neural network. One major issue of the MIDN is that it is prone to be stuck at local discriminative regions. To address this local optimum issue, we propose a pyramidal MIDN (P-MIDN) comprised of a sequence of multiple MIDNs. In particular, one MIDN performs proposal removal for its subsequent MIDN to reduce the exposure of local discriminative proposal regions to the latter during training. In this manner, it allows our MIDNs to focus on proposals which cover objects more completely. Furthermore, we integrate the P-MIDN into an online instance classifier refinement (OICR) framework. Combined with the P-MIDN, a mask guided self-correction (MGSC) method is proposed to generate high-quality pseudo ground-truths for training the OICR. Experimental results on PASCAL VOC 2007, PASCAL VOC 2010, PASCAL VOC 2012, ILSVRC 2013 DET and MS-COCO benchmarks demonstrate that our approach achieves state-of-the-art performance 
650 4 |a Journal Article 
700 1 |a Zhou, Chunluan  |e verfasserin  |4 aut 
700 1 |a Yu, Xin  |e verfasserin  |4 aut 
700 1 |a Xiao, Bin  |e verfasserin  |4 aut 
700 1 |a Yang, Yi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 11., Seite 3029-3040  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:11  |g pages:3029-3040 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3056887  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 11  |h 3029-3040