Meta-PU : An Arbitrary-Scale Upsampling Network for Point Cloud

Point cloud upsampling is vital for the quality of the mesh in three-dimensional reconstruction. Recent research on point cloud upsampling has achieved great success due to the development of deep learning. However, the existing methods regard point cloud upsampling of different scale factors as ind...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on visualization and computer graphics. - 1998. - 28(2022), 9 vom: 01. Sept., Seite 3206-3218
Auteur principal: Ye, Shuquan (Auteur)
Autres auteurs: Chen, Dongdong, Han, Songfang, Wan, Ziyu, Liao, Jing
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on visualization and computer graphics
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM321212983
003 DE-627
005 20250228231620.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2021.3058311  |2 doi 
028 5 2 |a pubmed25n1070.xml 
035 |a (DE-627)NLM321212983 
035 |a (NLM)33560989 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ye, Shuquan  |e verfasserin  |4 aut 
245 1 0 |a Meta-PU  |b An Arbitrary-Scale Upsampling Network for Point Cloud 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.08.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Point cloud upsampling is vital for the quality of the mesh in three-dimensional reconstruction. Recent research on point cloud upsampling has achieved great success due to the development of deep learning. However, the existing methods regard point cloud upsampling of different scale factors as independent tasks. Thus, the methods need to train a specific model for each scale factor, which is both inefficient and impractical for storage and computation in real applications. To address this limitation, in this article, we propose a novel method called "Meta-PU" to first support point cloud upsampling of arbitrary scale factors with a single model. In the Meta-PU method, besides the backbone network consisting of residual graph convolution (RGC) blocks, a meta-subnetwork is learned to adjust the weights of the RGC blocks dynamically, and a farthest sampling block is adopted to sample different numbers of points. Together, these two blocks enable our Meta-PU to continuously upsample the point cloud with arbitrary scale factors by using only a single model. In addition, the experiments reveal that training on multiple scales simultaneously is beneficial to each other. Thus, Meta-PU even outperforms the existing methods trained for a specific scale factor only 
650 4 |a Journal Article 
700 1 |a Chen, Dongdong  |e verfasserin  |4 aut 
700 1 |a Han, Songfang  |e verfasserin  |4 aut 
700 1 |a Wan, Ziyu  |e verfasserin  |4 aut 
700 1 |a Liao, Jing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1998  |g 28(2022), 9 vom: 01. Sept., Seite 3206-3218  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:28  |g year:2022  |g number:9  |g day:01  |g month:09  |g pages:3206-3218 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2021.3058311  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 9  |b 01  |c 09  |h 3206-3218